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Continuous and finite difference forms of the governing equations are derived for a
version of the Bryan—Cox—Semtner ocean general circulation model which has been
recast in orthogonal, transversely curvilinear coordinates. The coding closely follows
the style of the Geophysical Fluid Dynamics Laboratory modular ocean model No. 1.
Curvilinear forms are given for the tracer, internal momentum, and stream function
calculations, with the options of horizontal and isopycnal diffusion, eddy-induced
transport, nonlinear viscosity, and semiimplicit treatment of the Coriolis force. The
model is designed to operate on a rectangular three-dimensional array of points and
can accommodate reentrant boundary conditions at both ‘northern’ and ‘east-west’
boundaries. Horizontal grid locations are taken as input and need to be supplied by a
separate grid generation program. The advantages of using a better behaved and more
economical grid in the north polar region are investigated by comparing simulations
performed on two curvilinear grids with one performed on a latitude—longitude grid
and by comparing filtered and unfiltered latitude—longitude simulations. Resolution
of horizontally separated currents in Fram Strait emerges as a key challenge for
representing exchanges with the Arctic in global models. 2001 Academic press
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1. INTRODUCTION

The convergence of meridians at the North Pole in latitude—longitude models creates
major computational problems for simulations in which the Arctic is included. The first
that of integrating the prognostic equations at the polar point. The difficulty is normal
obviated by including a row of land points at the northern array boundary; however, t
creates a small ‘polar island, which, even when reduced to a single velocity point, obstrt
the transpolar flow and distorts the tracer fields. These defects may be quite importat
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2 MURRAY AND REASON

models with coupled sea-ice and time-varying surface flux forcings. Although currents
the Arctic Ocean are sluggish, they have the potential to affect other parts of the world oc
through the export of seaice and the water mass transformations that occur in the Greer
Sea. We have found [40] that the need for a polar island and the distortion it produces ca
avoided quite satisfactorily by treating the polar grid row as a single composite prognos
tracer point, as has also been done in the ocean component of the NCAR climate m
[42].

The second problem is the severe limitation on computational time steps imposed by
small zonal grid spacings that occur near the pole. This is usually dealt with by truncating
selectively damping the shorter zonal wavelengths, which most limit the time step, althot
other methods have recently been proposed for ocean applications, namely variable
stepping [60] and using a reduced grid [64]. Fourier filtering is the method most commaol
employed to avoid the time step restriction in ocean models, but this can be an expen
remedy and one which tends to produce spurious features in the solution. These can b
result of Gibbs phenomena or the separate filtering of variables and may take the fo
of static instabilities, noisy vertical velocities, and small perturbations in the horizont
velocities [40].

While both the problems discussed above have ‘fixes, a highly convergent grid w
large cell aspect ratios and rapid cell size variation is not ideal for numerical modellir
Aside from the impact that these properties may have on truncation errors, such a gri
computationally inefficient and represents topographic and ocean features poorly. Redu
the meridional grid spacing in step with the zonal spacing, as on a Mercator grid, can
to some latitude at which it must be stopped) reduce cell distortion, but only at the ¢
of creating a time step limitation in the meridional direction and compounding the gr
inefficiency.

The problems and costs of grid convergence can be circumvented altogether by desig
a grid that places the poles outside the ocean domain. Because suitable land antipode
them do not exist [38], a simple rotation of the conventional spherical grid does not of
any advantage for modelling the global ocean. One solution, proposed by Deleersni
et al. [15] and Eby and Holloway [17], is to usea@mposite-rotatedrid, consisting of
a 90-rotated grid in the North Atlantic and Arctic Oceans joined at the equator in tf
Atlantic to a conventional grid, which is used for the rest of the world ocean. This grid
of very particular construction and suffers from a discontinuity in grid spacing at the joi
which has been recognized as a potential source of truncation errors at the equator. -
carried out by Eby and Holloway [17] and Cowagtial.[11] have indicated that the effects
of the coupling on the ocean solution and equatorial wave propagation would be sn
and tolerable, and the two-grid scheme has been implemented in the ocean circulation
climate modelling (OCCAM) project high resolution model [63]. However, the grid als
suffers from a possibly inadequate resolution in the Arctic when used in coarse resolu
simulations and from an incompatibility of subgrids at the Bering Strait.

A more general and flexible approach, and one which avoids these defects and lirr
tions, is the use of an orthogonal curvilinear grid. Several techniques are now availe
for generating orthogonal grids with global continuity. A number of diverse methods ha
been proposed for constructing global orthogonal grids by analytical and semianalyti
techniques about prescribed singular points by Murray [38]. Two meshes of semianalyt
construction have also been developed by other groups. One of these has recently beel
cribed by Madec and Imbard [34] and is being used by the Laboratoiresdi@gjraphie
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Dynamique et de Climatology (LODYCVyide Marti et al. [36]); the other has been con-
structed upon similar lines by Smitt al. [57] and is being used in the parallel ocean
program model. Each consists of a conventional southern hemisphere grid joined smoc
to a distorted northern hemisphere grid with an off-axis pole and in such a way as
overcome the shortcomings of the composite—rotated grid.

Curvilinear coordinates have already been used in some regional ocean models: ir
semispectral primitive equation model (SPEM) of Haidvagell.[27], and in a curvilinear
version [37] of the coastal ocean numerical model of Blumberg and Mellor [5]. The gri
required for both models are generated by a program in which the conformal bounc
fitting grid generation techniques of Ives and Zacharias [30] have been adapted for oc
model grids by Wilkin [65] and Wilkin and Hedstni [66]. Examples of meshes generated
by this program have been illustrated bgkkinen and Mellor [28] and Ezer and Mellor
[18]. Inthe applications for which the method was designed, the purpose of using curvilin
grids has been to allow the bounding coordinates to follow coastlines, rather than to disp
polar singularities.

Boundary fitting methods have not yet been brought to the point of being able to cre
global grids with matched reentrant boundaries; but this is a problem of grid generation,
numerical modelling. There would be nothing to prevent one of the global grids mentior
previously from being used in one of the regional models. These models contain sc
attractive features, such as the use of terrain-following vertical coordinates, the implerr
tation of advanced mixing schemes, and (in later versions) a free surface treatment. Bec
they were designed principally to handle regional scale dynamics, they may not necess
be the most appropriate for global integrations. Both are discretised on an Arakawa C ¢
which gives a more accurate representation of the geostrophic adjustment when the Rc
radiusis resolved (e.g., [8, 61]), as it oftenis in regional models. For coarse resolution glc
models, the B grid gives the better adjustment and allows a more exact solution when
Coriolis term is treated semiimplicitly [6]. The stability condition on an explicit Coriolis
term is more likely to be a limiting factor in coarse resolution models than in fine resolutit
models, where the momentum time step must be very much smaller ttian 1

The oldest and most familiar ocean model, and the one still most commonly usec
global modelling applications, is the one that developed from the work of Bryan and Cox
the 1960s, with contributions by Semtner in the 1970s [6, 9, 12, 52]. Its principal defini
features are the use of an Arakawa B grid, constant depth levels, a rigid lid conditi
a no-slip lateral boundary condition, centred advection, and leap-frog time stepping
recent years, the model has been coded for efficient vectorisation and option selectic
the modular ocean model format at the Geophysical Fluid Dynamics Laboratory (GFD
Princeton, New Jersey [43—45]. In its modular format, the model has acquired and is
acquiring a range of physical parameterisations and numerical processing options, but
characteristic features it remains broadly unchanged. Orthogonal curvilinear coordin:
have now been implemented or are being implemented in the model by other groups,
by Smithet al. [57]; however, when we first contemplated doing this, the model was n
available in this form, and it was felt that, in view of its utility for global climate modelling,
version should be written in orthogonal curvilinear coordinates, but incorporating the sa
numerics, the same basic physical parameterisations, and the same ‘modular’ program
style as the GFDL model. One of the purposes of this paper is to describe the resul
model. The base code that we used for this conversion was the modular ocean mc
version 1 (MOM1); however, it is not the coding details, but rather the algebraic statem
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of the numerics that is presented here, and this would also be relevant to the conversic
other spherical model codes derived from it.

The prognostic equations and the continuity equation involve vector differential operatc
The forms of these in curvilinear coordinates differ from their spherical counterparts, a
the task has been to rewrite the governing equations in terms of these operators. Contin
forms of the governing equations are derived from the curvilinear forms of the different
operators in Section 2. The finite difference forms derived from these are given in Sectiol
Supplementary details of the model and a brief treatment of its energetic consistency is g
in the appendices. The conversion has been limited to the case of orthogonal curvilines
in the horizontal and with constant levels in the vertical; the further generalisation tc
horizontally variable vertical discretisation, such as has been implemented in the sphel
model by Gerdes [21] and, more narrowly, in sigma and isopycnal coordinate models,
not been attempted at this stage.

The advantages of using orthogonal curvilinear grids in an ocean model derive from th
properties they possess: (1) their ability to follow coastlines and avoid the need to carry
wasteful computations at land points; (2) their ability to remove the north grid-pole from tl
ocean domain and place singularities over land in such a way as to minimise converge
problems; and (3) their ability to provide grid size variation beyond that available fro
grid convergence and coordinate rescaling and, hence, a global grid with a high den
of grid points in a focal region and lower density elsewhere. The first of these has alre:
been exploited in regional models, as mentioned above, and the third has been investic
by Murray and Reason [41] using a global grid designed to focus resolution in the Indi
Ocean sector. The model experiments reported in Section 4 focus on the second advar
that of using curvilinear grids for removing the north grid pole from the ocean domain ar
more particularly, the advantages of doing this for representing the Arctic Ocean in glo
models. This was investigated by comparing simulations of the North Atlantic and Arc
Oceans using one latitude—longitude grid and two curvilinear grids.

2. ORTHOGONAL CURVILINEAR FORM OF THE PRIMITIVE EQUATIONS

2.1. Curvilinear Forms of the Differential Operators

The primitive equations for an ocean obeying the hydrostatic, incompressible, &
Boussinesq assumptions may be given as

ou 1
a—tH:—(u~Vu)H—kaU—;VHp-f‘(V'T)H‘f‘(Qu)H» 1)
aT
ﬁ=_u.VT+V-(KVT)+QT, 2)
aS
o=y VS+ V.- (KVS) + Qs, 3)
V.u=0, (4)
19p
_=% g 5
92 g (5)

p=p(T,S p~pT,S2, (6)
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whereu is the velocity,T is the temperatureS is the salinity,f = 2Q sin¢ is the Coriolis
factor, p is the density[ is the viscous shear stress tensors the diffusivity tensorg is
the gravitational constant(),)n, Qt, andQs are source terms, and the horizontal part of
a vector quantity is denoted by the subscript ‘H.” Egs. (1)—(5) include vector different
operators, whose form depends on the properties of the coordinate system adopted.
The curvilinear system is described by the two horizontal and one vertical nondims
sional grid variablegé, &, &3) = (&, n, ¢) and the metric coefficients or factohg =
X /0&1, hy = 0y/0&,, andhs = 9z/0&3, where(x, v, z) are arbitrarily referenced distances
measured along the grid contours. The local directions ofth&, andés; axes define the
unit base vectoré&g;, &, &;). The horizontal velocity components,, u,) = (u, v) are re-
solved parallel to the corresponding base vectors. By convention, the pgsiinds, axes
are taken to be the ones most nearly aligned with the east and north directions over 1
of the grid, and the contours that they follow are referred to as ‘grid meridians’ and ‘g
parallels.’ In the special case of a latitude—longitude grid, the metric factors are

h, = aéX coso, h, = ade,

whereais the radius of the Earth. For consistency with the horizontal terms, the vertical ter

are also rendered in terms of grid variables and spacings, although the latter are const:

the horizontal. The vertical coordinatgsandz, and the vertical velocitys = w, are taken

to be positive in the upward direction in the differential and finite difference equations.
General orthogonal curvilinear forms of the vector differential operators are given

Malvern ([35] Appendix Il) and other standard texts. The transverse curvilinear forms us

in this paper are given in Appendix A.

2.2. Time Integration

The time marching procedure is exactly the same as in the GFDL model; however,
method will be reiterated in order to introduce the major terms, whose curvilinear forr
are different.

Stability and second order accuracy in time are achieved by the use of a leapfrog sch
in which prognostic variables are integrated over a double time inter§t), (2., from
time level(n — 1) to time level(n 4+ 1). Terms in the prognostic equations are normally
centred in time, except for the diffusive and viscous terms, which require a forward rat
than a centred time difference for stability [50]. To avoid decoupling of the solutions
adjacent time steps, a forward or similar integration over a single time interval is substitu
at occasional time steps.

The prognostic equation for trac&(T; = T, T, = S) may be written

TS(n+1) _ Ts(n—l)
28ts

Gr.,

wherests is the tracer time step, which may differ from the momentum time stgp,and
may vary from one level to another [7], and

Gr,=—u- VI + V- (KVT"Y) + Q7

combines all the known forcings. When the vertical component of the diffusivity tens
K33, is enhanced by tensor rotation or stability-dependent vertical mixing, the time s
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limit for diffusion, §tis < h%/(4K33), may be exceeded, and the mixing term will require ar
implicit solution of

TMD _ 70D d 9
YT € it — | Kag— (T — 7D |
25t T, T+ Qvdiff 57 |35 ( s s )

Solutions are stable at all time steps provided l%m_i avdift < 1. The vertical mixing of
horizontal momentum may be handled in the same way.

In the momentum equation, a rigid lid condition is imposed, which explicitly filters extel
nal gravity waves from the solution. The contribution to the pressure that would natura
arise from variation of the height of the free surface is replaced by a notional surface
rigid lid pressure ps. The total pressure at any point is the sumpgfand a hydrostatic
pressuref, obtained by integrating Eq. (5); however, the surface pressure is not actue
determined. Sinc@s acts on all levels equally, it affects only the depth-averaged velocitie
(the external or barotropic mode) and has no effect on the depth-anomalous velocities
internal or baroclinic mode). By solving the external and internal modes separately «
taking the curl of the barotropic momentum equation, the surface pressure gradient ter
eliminated. Because the depth-integrated flow is nondivergent, the resulting equation
be solved as an elliptical equation of the stream function tendency (see Section 2.9).

To overcome the restriction imposed by the need to resolve inertial oscillations,
Coriolis term may be calculated semiimplicitly; this is done by replacing the time-centr
velocities in the explicit Coriolis term by a weightingof their values at timén + 1) and
(1 — «) of their values atn — 1), viz.,

D _ (-1

= —fk x [au™? + (1 - a)u™P] + (other forcings.
Z(Stuv

Using the notatiodxu = u™?Y — u™=D the tendency term may be written

S

= —afk x 8xu— fk x u® + (other forcings,
zatuv

where, to make the equation more general, the time level of the explicit part is definec
| = nfor explicit treatment¢ = 0) andl = n — 1 for semiimplicit treatment%( <a <1).
Transferring the time change part of the Coriolis term to the left-hand side (LHS) a
combining the explicit part with the other known forcings, the momentum equation mi
now be written

Satu
28tuv

1

+afk x dxu =G, — —VHpén),
Lo

where

1
Gu=-u". vu® — fk x u® - o VH p + v . TOD 4 QP
0

and is taken to include, in addition to the explicit forcings, any implicit vertical friction.
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Because of the measures required to eliminate the surface pressure, the momentum
tion, and hence the forcings, are divided into external and internal modes, viz.

Sl _ — 1
27 L afk x 8x0 =Gy — —Viup™, @)
28ty £0
(Sztu/
fk x Sxu' = G/. 8
25ty + o X 02t u ( )

The time steps for the two modes are normally the same, but need not be. When the Col
term is semiimplicit, the internal mode is obtained by manipulation of Eq. (8) as

Sau [Gy— (28twaf)k x Gy’
208ty 1+ (28tyaf)?

’

the prime outside the bracket indicating the deviation from the vertical average. The exte
mode is obtained by combining the two terms on the LHS of Eq. (7) and solving the eq
tion as described in Section 2.9.

2.3. Continuity Equation
Using Eqg. (A4) from Appendix A, the continuity equation (Eq. 4) becomes

V- u (9)

1 [3(h2U1) 3(h1U2)] 19us _
~ hihy | 9% 0&2 hs 083

The vertical velocityw, is calculated diagnostically by downward integration of the hori
zontal divergence,

&3
Uz = — VH-Uhgdfé.
0

2.4. Advective Term for Tracers

The continuity equation allows the advective terms in Eqgs. (2) and (3) to be rephrase
flux form, which in the finite difference equations ensures conservation of the transpor
guantity. For the tracefs, substituting the fluxiTs for V in Eq. (A4) gives

1 [a(hauyTy) n d(hiuzTe) ] 1 9(usTy)

U VT.=-V.UT) = — _
W VTe= =Vl =1 0 | o 05, hs  9&

(10)

2.5. Diffusive Term for Tracers

(a) Horizontal mixing. In many models, mixing is assumed to be transversely isotrop
with respect to the vertical axis, with a horizontal diffusivify,, being very much larger
than the vertical diffusivityK ;. The diffusivity tensor may be written
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Inserting this in Eq. (A5) yields

V. (KVT. A28y 0 (a0 MOlsh ) 2 0 (EuOTs)
( )= h1h2[3$1< "y 0 95\ " hy 08, hs 953 \ hs 943
(11)

(b) Isopycnal mixing. Because tracers mix preferentially along isopycnal, not horizor
tal, surfaces, it is becoming common for modellers to use a rotated form of the mixi
tensor, with a diffusivityA, in the isopycnal direction. Following Cox [13], the form of
the tensor originally proposed by Redi [49] is usually modified by the omission of certe
components in the small angle approximation, the identification of diapycnal as verti
diffusivity (Ky), and the inclusion of a purely horizontal component of diffusivify|
for numerical stability, then becoming

A + Ay 0 AlS
K= 0 A + Ay A|Sy , (12)
Al AS  A(S+S)+Kny

where

S=V,z= <_px, _py,o)
Pz Pz

is the isopycnal slope vector and

( )_(18,0 1 dp 18,0)
P Py P2) =\ 1 981" 1y 98, hg 083

are the gradients of locally referenced potential density. The diffusion term then becorr

1 0 0Ts 10Ts
v (KVTS)_hhz{asl[ <(A'+AH)h_¥ 'S‘h_sa_sa”

9 1 3Ts 10Ts
352{ <(A' A e T Yy g, )H

+ii{A. [&ia_n+sjlaTs]

h3 8%‘3 h1 851 I’12 852
2 2 19Ts
A S+ ) K] o | 3

Note that in both Egs. (11) and (13) above, the inclusion of the diffusivities inside tl
derivatives allows them to be made spatially variable, which may be desirable for eitl
physical or numerical reasons.

(c) Eddy-induced transport. Gent and McWilliams [19] and Geeet al.[20] have para-
meterised the unresolved tracer transports due to the nonlinear effects of subgrid s
eddies as an advection of tracer by an eddy-induced transport veidcitp the latter
paper, this is taken to be proportional to the gradient of the logarithm of the thickness
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(locally referenced) potential density intervalg/dp, and hence to the vertical gradient of
the isopycnal slope. The form proposed by Geatral. [20] is

uf = —0(AeS)/dz, w* = Vi-(AeS), (14)

the two expressions being related by continufy. may be interpreted as a ‘thickness
diffusivity’ and has been absorbed into the derivative to ensure nondivergence of the de
integrated horizontal transport. Eddy-induced velocities normal to ocean boundaries
made zero by settingeS = 0 at the boundaries.

Griffies [24] has pointed out that the eddy-induced advective term may be rewritten &
diffusive term, which can be obtained by the easily verified manipulation

dAeS

d
—Ts) i (Vh - (AeSTy)
z

-V -UT) ==-Vu- |-
(u*Ts) H( P

0Ts 0
— | —AS—2 —(AgS- Ts).
VH ( E 82>+82( ES-VyTy)

The terms imply the addition of an antisymmetric or skew diffusivity tensor to the symme
rical isopycnal diffusivity tensori{sop) given in Eq. (12), viz.,

0 0 —-Ae&
0 0 —AeS | + Kisop
AeSc AeES 0

A+ Ax 0 (A — Ap)
_ 0 A + Ag (A - AD)S, | (15)
(Al = Ae)Sc (AL +Ae)S A(S+S) +Kn

In addition to simplifying the calculation, especially in the case whge= A, when
K13 = Koz = 0, this formulation has some numerical advantages, which are discusse
Appendix E.

2.6. Hydrostatic Pressure Gradient Term

The hydrostatic pressure is obtained by integration ofrits#tu density, calculated from
the equation of state, viz.,

¥4 &3
,52_/0 pgdiz—/o pahs de}, (16)

Horizontal gradients are calculated from
1_ 1 1 9p.
lgupo-ty LB )

where a constant density, is used in the Boussinesq approximation.
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2.7. Advective Term for Momentum

Using the identityV - (uu) = (u- Vu) + uV - u, and the fact that an incompressible
ocean is nondivergent, the momentum advection term can be written in flux form a
evaluated using the formula for the divergence of a tensor (Eq. A6), which in this case
the open producyu, viz.,

—u-Vu=-V_-(uu

1 0 d ohy oh, 1 0
= — (hauguy) + — (hauzuy) + Usup — — UpUr— —(UsUy)
0&1 0&2

hihy & 0&1 h33§
{1[ (huu)+8(huu)+uua—m—uua—m} 18(uu)}
hihs | 98, 2U1U2 o6 1U2U2 1 2851 1 1852 hs 08 3U2
1 d 0 10 ~
{hlhz{ 3, (hauyus) + agz(hlu2u3)] + h3aég(usua)}es- (18)

Vertical velocity is calculated diagnostically and its advection @heomponent) is not
considered. Thé, andé&, components of the momentum advection are each composed
the following parts: the first two terms are tbealar-calculatedhorizontal advective terms,
i.e., calculated without reference to the rotation of the base vectors; the second two
the horizontal advective metric terms; and the last is the vertical advection of horizor
momentum. The metric terms take rotation into account by means of two grid-depend
coefficients,L1 = 1/(h1h,) ahy /&, andL, = 1/(h1hy) dhy/d&1, which are proportional
to the divergence of grid lines in the meridional and zonal directions, respectively.
spherical coordinatet,; = —tan¢g/(asx), butL, = 0, since the parallels do not converge.

2.8. Friction Term

Williams [67], Wajsowicz [62], and Smagorinsky [55] have derived the form of th
friction term in spherical polar coordinates by applying Phillips’ [47] approximation o
a shallow atmosphere (in which the Earth’s radius is represented by a coastanthe
formulae for the metric coefficients) to the tensor forms of the transverse isotropic stre
strain rate relationships. However, the full expansion of the friction term in orthogon
curvilinear coordinates was not given by these authors and is accordingly derived here.
term is first derived in terms of strain rates; this has also recently been done in a some\
different fashion by Griffies and Hallberg [26]. It is further shown how the friction term ca
be usefully rewritten in a ‘momentum diffusion’ form analogous to that used in spheric
coordinates by Bryan [6].

(a) Strain rate components in curvilinear coordinate§.he expressions for strain rate
in orthogonal curvilinear coordinates are of the foniué[4], Appendix 2)

1 ouy U, ohy uz ahy
e
hy 96, hihy 9% hihz 9%

h, 8 Uz LY h, o Ul
€12 = 2h1 351 2h2 8%_2 ’
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Because in transverse curvilinear coordinates some of the metric derivatives are
(Eq. A3), the components of the strain rate tensor simplify to

1 0uq Uo 8h1 hz 0 Uo hl d Uip
ell = —0+t e 0 e].2 = An A - + o N R
hi 061 hihy 98 2h; 961 \ h2 2h; 36, \ hy

LT K Y T
ho 95, hihy 94 2hg d&3 | 2h; 0
1 ous 1 Joup 1 dus
2= g 08 ez3=z—ma—sg[+z—ma—sz]'

Since the horizontal gradients of vertical velocity are very small in large-scale ocean ap
cations, the bracketed terms in the expressiongfpande,; will be neglected from this
point on. It is convenient to express the horizontal strain rate components in terms of
tension and shearing rates of deformation or strain,

1 0du; Uo 8h1 1 0us uq 8h2

—— +
hi 061~ hih; 98 hp 9% hihy 94
. h2 0 <U1> h]_ d (U2>
~ hy & \hy hy 96, \h1 )’
h2 0 Us h]_ d Uy
Ds=2e,=—— [ — —— =)
s = o hy &1 <h2>+h23§2 (h1>
(b) Form of the stress—strain rate relationThe stress—strain rate relation for a fluid

transversely isotropic with respect to the vertical coordingteis of the following form,
given by Williams [67], following Green and Zerna [23]:

Dr=en1—en=

eyl G CC 0 0 0 en
Too C, C; C3 0 O 0 &
33| |G G C 0 O 0 €33
™| |0 0 0 Cs O 0 2603
713 0 0O 0 O GCs 0 2e3
(2] [0 0 0 0 0 (Ci—Cp/2] |2em]

(Note that the stresses here are in ‘kinematic units,’ i.e., the physical stresses divide
p.) Kirwan [31], Williams [67], and Wajsowicz [62] have shown that, in an incompressibl
fluid, constraints on the normal strain rates and deviatoric stresses,

ei1+en+ex=V-u=0,

T+ 12+ 133=0,

reduce the number of independent eddy viscosities from 5 to 3: the familiar horizontal ¢
vertical eddy viscosities,

An = (C1 —Cp)/2, Ku = Cs,
and a third viscosity, variously defined as

e=Ky=C3-C, [31, 67] and v=(C14+Cy)/2—-C3=Ay —¢ [62]
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In fact, the normal stress equation alone effects this reduction, since the equation
T11+ 102+ 133 =(C1+Co+C3)V - U+ (C3+C4 —C1 - Cr)ezz3 =0

imposes two constraints on the coefficients (Mzz.4 C, + C3 = 0andC3 + C4 — C; —
C, = 0), as recognised by Smagorinsky [55], making= 3/2(C; + C,). His normal
stress—strain relations can be rendered ugiggKy, andv (=3 x hisa) as

1
AM(911—822)+V(V'U—€‘33>,

T = 3
1
T2 = —Am(B11 — €2) + v <3V~u—633> , (19)
1
T33 = —2V <3V U — 933> .

The stress—strain rate relationships required in the friction term, after applying the incc
pressibility condition to and rearranging the first two equations above, may |
written

(11 + 122)/2 = —vegs,
(t11 — 122)/2 = Am (€11 — €2) = Ay D,

712 = Anm - 2612 = Ay Ds, (20)
113 = K - 2€13,
723 = Ky - 2823.

(c) Curvilinear form of the friction term. The frictional force is computed from the
divergence of the eddy viscosity stress ten$os [tmy], i.€.,

pF =V . (pT).

It is appropriate to apply the Boussinesq approximation at this point, allowitm be
eliminated from both sides of the equation. Only the horizontal componEntnd F,
figure in the equations of motion, and are given (from Eq. A6) by

oh, th] 1913

Fiom o | (hptan) + o (hazon) +
=— | —(hyt — (1t T — — Top— —=
YT ohihg log o Y T ag og, o hs 9&3
1 0 0 8h2 8h1 1 31’32
Fo=— | —(h “(h P2 202 o
2= i, [851( 2T12) + 8%’2( 1I22)+t128§1 Tllaé__z] hs 9&5 (21)
——
Fu Fv

SinceT is symmetric, only they,, 713, andr,3 off-diagonal elements will hence be referred
to. Itis convenient to reexpress the normal stressiég in terms of their sum and difference.
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For the&; component,

1 a T11— T2 | Ti1+ 122
F 2 In
(Fu) = hih, {351 [ 2( 2 - 2 ﬂ
19 ., ohy (min—t2 Tt
e 95 2, 1712 + I ( 2 2 ) }
1 1 0 T11 — T22 1 0 d T11 + T22
I BN =9 w2 hy—2- .
hlhz{h23§1 2< 2 >+h13§2( 72) + 2351( 2 >}

Adding in theF, term from Eq. (21) and substituting the stress—strain rate expressions fr.
Eq. (20), the friction terms become

1 19 1
Fr=—<{¢ = " (h2AyD hAD}
' hlhz{hzaél( 2AmDr) + hi0 Ez( M Ds)

1 1
- h*@( v€s3) + FE(KM 2e13),

L1 1
~ hihy {hz 0&1 (h2AuDs) — hy 9& (h Au DT)}

0 1
- E@(V%a) + h*g(KM 263).

(22)

The second term in each expression is proportional to the gradient-efr,, and hence
733. Williams [67] has argued that sinegs should be proportional ta’w’ the associated
eddy viscosity should be of the order Af; in a highly convective regime but negligible in
a stably stratified atmosphere or ocean. (Williams made this comment in relatiphub
clearly this should be understood to be= (Ay — €), as it has been by Wajsowicz, who
has supported her argument with a scale analysis.) Accordingly, it has been the practi
hydrostatic models to ignore this term, as is done here. With this modification, the horizor
parts of Eq. (22) are equivalent to Egs. (A3) and (A4) of Griffies and Hallberg [26], b
with the density dependence suppressed.

Substituting the expressions for the strain rate in Eq. (22) withy tieems removed,

w2 5) - ()1
~ hihy | hy 04 hy 0&1 h2 3¢,
it Ve e () *heas ()14 s ()
hy 02 hy 0&; h2 8, \ h hs3 983 \ hs 3¢
il o 2 ) ()
~ hihy | hp 98 hy 0&; hz 88, \
1 9 hz d (VLN h]_ d KM aup
it U5 s ()~ ()| e ()
hy 3%2{ "M hy o0& \hy h, 98, \ hy hs 3&s \ hs 9%
The friction term may be used either as given above or in the reorganised form gi

in (e) below. In either case, the viscosities, being within the derivatives, may be me
variable.

(23)
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(d) Nonlinear mixing. Horizontal eddy viscosities in ocean models normally have t
be made rather unphysically large in order to satisfy overall stability criteria; however, th
may be reduced in most places if the local velocity field be taken into account. Smagorin
[54] scaled the viscosity to the horizontal deformation; his Eg. 4.2.2 corresponds to Eq. (
above but specialised to the case of a conformal (Mercator) gridr{hisl/h; = 1/hy)
and a viscosity parameterised as

An = (knA)?Dp,

whereky is a nondimensional number (0.28 in his modal)is a mixing length, and

Dp = /D2 + D2

is a grid-invariant quantity known as the ‘pure’ or ‘total’ deformation rate. In his schem
the tracer diffusivity,Ay, was parameterised with the same dependence. In a later pa
[55], he provided the physical basis of the parameterisation and a tabulation of the m
different values corresponding kg, that have been used by other modellers.

For numerical reasong is usually related to the grid scale, e.g.= +/hih, or A =
max(hy, hy). Because the grid size normally differs in the two coordinate directions, Ros:
and Miyakoda [51] and others have scaled the viscosities i #mgly directions anisotrop-
ically, viz.,

711 = (Aw)xDr 712 = (Am)yDs,
721 = (Am)xDs 722 = —(Am)yDrT,
where(Aw)x = (kiyh1)?Dp and(Aw)y = (kyh2)2Dp; however, it should be noted that this

prescription violates the requirement that = 1, (i.e., that the stress tensor be symmetric,
and hence irrotational) and the nonconvective assumptiortdhat 0, since

711+ 722 = —733 = [(Am)x — (Am)y] Dr.

(e) Momentum diffusion form of the friction termAn alternative form of the friction term
may be obtained from a manipulation of the horizontal parts of Eq. (23) (see Appendix |
this may be written

au au
(FH)1 =V - (AuVuy) + <M12 — M22> + (N1ug + Nauy),
081 0&>
au ou
(Fr)z = V- (AyVup) — (Mll - le) + (Nquz — Nauy), (24)
9&1 &, —

2nd metric term
1st metric term

where
1 2A\n dhy 8AM>
My = Ty ,
17 hih, ( hy 39& ' 0%
1 2Aym oh 0A
M, = ( MZ2 4 M) ,
hiho \ hy 09& = 9%
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N _1{ 18(A *‘2“‘2) 18<A hlahlﬂ
YTy | hpog U Mhiag ) hpog U Vhpog )]

Vo i [ (afeite) ()]

hiha | hz 08 hy 0> hy 0> hy 9&;
In spherical coordinates, where all metric derivatives with respect to longitude are zero,
coefficients reduce to the forms derived by Murray and Reason [39] from the more gen
equations of Wajsowicz [62], and in the constant viscosity case, to the form incorporate
the model of Bryan [6]. In curvilinear coordinates with constant viscosity, the coefficier
reduce to forms equivalent to the somewhat more complex expressions (when expan
derived by Smitret al.[57].

Thefirsttermin each equationis the scalar-calculated Fickian diffusion of momentum;
bracketed expressions which follow are what we shall call the first and second order me
terms. An interpretation of the metric terms is possible in the constant viscosity case.
first order metric terms take account of the rotation of the base vectors between neighbot
points in thex andy directions respectively. In spherical coordinates this only occursin tt
x direction. The second order metric terms are proportional to velocities that are of like ¢
contrary name to the momentum component in which they are resolved. The like-nar
(N;) components take account of the curving apart of the meridians and/or parallels,
or the other of which will always occur on a doubly curved surface. The contrary-nam
(N2) components are present when cell aspect ratios have a two-dimensional depenc
which cannot be removed by separate one-dimensional compressions; it may be st
that this property does not exist in conformal or stretched—conformal grids (such as
spherical grid, or the bipolar, confocal, or multipolar grids of Murray [38]) but may becon
appreciable where subgrids of different properties have been patched or graded togetl

In the above manipulations, it was possible to remove the mixed derivaifiegd£1 0,
andd?u,/d&,9&,, which, in afinite difference calculation for a point ), are the only ones
requiring velocity values at the four corner pointis;+ 1, j + 1) of a nine-point template.
With their removal, the friction term only requires a five-point Laplacian template but h:
complicated coefficients. When viscosities are constant in time, then so are the coefficie
and their complexity is of no moment, since they can be calculated once and for all at
beginning of the integration. But when viscosities are parameterised as in the Smagorit
scheme, strain rates are needed for calculating them even if they are not used in the fri
operator; moreover, the metric term coefficients, being functions of the viscosity gradiel
must still be computed at each time step. There is thus nothing to be gained from
manipulation in terms of computational speed when this scheme is used; however, tl
is another consideration. As discussed by Smeitttal. [57], the five-point operator has
the advantage over the nine-point operator that it does not contain a checkerboard |
space and is thereby able to damp noise at the grid scale. However, two-grid intervals
eliminated in the manipulation only to the extent that they arise as an essential part of
strain-based numerics; they survive in the first metric terms when there is grid curvilinea
(which is present in both curvilinear and spherical coordinates) and/or viscosity variati
The relative sizes of the two sources of computational mode are probably proportione
the sizes of the main and first metric terms, and hence to the maximum wave number:
respectively, the velocity variation (the grid scale) on the one hand and the grid curvatur
viscosity variation on the other. When the curvature is small (as it is usually designed to be
most curvilinear grids) and the viscosity variation, if allowed, is likewise small (as itis likel
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to be when the viscosity is based on grid size), both having an inverse length scale of o
1/a, the second source will also be small and probably easily stabilised by the horizor
viscosity of the main or ‘Laplacian’ term. When strain-dependent mixing is implemente
both sources will be on the scale of the velocity variation, so it is not certain how effective
stabilisation will be. This question probably warrants investigation. A formulation whic
obviates all sources of null mode has recently been proposed by Griffies and Hallberg |
and embodies numerics similar to those implemented for isopycnal diffusion by Griffi
et al.[25].

2.9. Stream Function Tendency

Taking the curl of the external mode equation (Eq. 7) to eliminate the pressure gradi
term results in

Sl I
k- -V x {Z;Uﬁakasﬂu] =G, (25)
where
Gi=k-VxGy= | ey -2 (hoy (26)
an “Thihg l0g 20 ag T

is the vorticity forcing, written in curvilinear form with the aid of Eq. (A2). The fact that
the depth-averaged flow is nondivergent allows the velocity to be represented as a str
function, v, viz.,

, , 27
hy 0&, " hy 9&; @7)

— 1 _i 10y 10y
u_Hkwi_H( O),

whereH is the ocean depth. Substituting this in the first term on the LHS of Eq. (25) giv

Sau 1 [a <1h23wt> 9 <1h18wt>}
k- -V = (=2 )+ (=2 28
" 25ty hihy |9& \H hy 061 ) © &, \ H hy 95 (28)

whereyt = 8x1/26t,, is the time-discretised form of the stream function tendency. If th
Coriolis term is treated semiimplicitly, the second term is also needed,

kamwx@mz—mmmka(;vw>
L@ (010 0 110
=" hahs [a&(th hzasz‘”> 852<th h 98,
t t
L0 (1) 00 (1) ]
hihy |98 \H ) 98 & \H) &

Substituting Egs. (26), (28), and (29) in (25) gives an elliptical equatiari jrvhich may
be solved using any one of a number of relaxation methods.
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3. FINITE DIFFERENCE EQUATIONS

3.1. Grid Operations

On the Arakawa B grid, scalars lie at integral points in each horizontal direction, a
the velocity components lie at half integral points, i.e., at the corners of each tracer c
Because fractional subscripts cannot be used in programming, it has been the practice |
spherical model to distinguish integral and half-integral one-dimensional coordinate :
metric arrays by the suffixes,” for tracer, and &’ for velocity, respectively. In curvilinear
models, positions and metric factors are functions of two indices, each of which may asst
integral or half-integral values, and thus need to be defined on four subgrids, which, by \
of respect to the convention outlined above, may be designated by the suffixeést;
‘tu,” or ‘uu,’ the first letter referring to thé direction and the second to thedirection;
thus,

M, ) =Rij, duli, ) =i

In the spherical modet-cell coordinates are commonly obtained as averages of adjace
u-cell coordinates. The concept af¢entring’ has little meaning in the case of curvilinear
models, where grid orientation and spacing both vary in two dimensions; instead, the prac
that we have adopted is to obtain the points of the four subgrids from a smooth dou
resolution grid created directly by the grid generation algorithm, as recommended by M
etal.[36]. While geographical positions are only needed for determining metric and Coric
factors at model initialisation, the double suffix notation is useful to indicate the centring
guantities which appear in the model equations, &g.Uuu, (An)tw, €tc. The horizontal
grid conventions are illustrated in Fig. 1.

FIG.1. Horizontal grid arrangement, showing coordinate axeis aj,(locations ott, ut, tu, anduu subgrids,
t-cell (solid) andu-cell (dashed) boundaries, and sample variables.
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In the discrete forms of the model equations, derivatives are calculated with the aic
centred differencing and averaging operators, e.g.,

B, j) = @iy = Gyl —Gi-1j = Qu(, j) —aul — 1, j),
o 1 1 . . ..
@, 1) = @ity = 5@ +6)) = Slald + 1, ) +ad, D]

(To minimise multiple subscripting, the unsubscripted forms of grid variables and veloc
componentsé, n, ¢, u, v, andw, have been used in this section.) The above usages &
readily extended to two dimensions. Because both averaging and differencing operat
result in a quantity referenced to a grid position £iror ») half an index unit from its
progenitors, it is not always necessary to specify what valueoofj it refers to, but only

to know upon which of the four subgrids it is located. The operators for a two-dimensior
guantity behave as

8eOt = BeQuts Tur’ = (@Duu,

and they may be applied consecutively, viz.,

850y 0tt = 8,050t = (858, Auus
5,0k = 8,0 = By @ uus
8:0: 0t = (8:0: )1t

A consecutive averaging and differencing in the same direction results in a difference c
a double interval,

—t e 1 1 1
et = 8: 0t = E(Qi+1,j —G,j+0.j—G-1j) = ESZeqt = 5(52;Q)tt,

where(824X)i = o1 — i_1..

The vertical discretisation is the same as for the spherical model, with prognostic qu
tities being computed at integral btevels (cell centres) and vertical velocities and fluxes
at half-integral orw levels (cell interfaces). Vertical coordinates are referencet! tmd
‘w’ grids using a single suffix, e.g.,

zk) =z, z,K =27, 0 =21=0),

and model quantities using three suffixes, where necessarylg.g=Ti:), Uyut (=Uuy),
Wttw, Wuuw, (KM)uww, €tC. Note that, whilé increases downward, differences are taken ir
the upward direction; thus,

(B Myt = Ok — Okr1.

Some ancillary issues related to grid operations are discussed in the appendices. Met
of supplying grid information to the model and of interpolating data on input and outp
are given in Appendix C, and conditions for continuity at various types of reentrant arr
boundary are given in Appendix D.
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3.2. Velocity and the Continuity Equation

The horizontal velocity is reconstituted from two parts: a barotropic part, calculated frc
the stream function, and a baroclinic part,viz.,

1 1
(h2H)uu (th)uu

The depth aty’ points (Hyy) is taken as that of the shallowest of the fotir points
surrounding it. These velocities are averaged to cell faces in the continuity and advec
equations; however, at velocity cell faces, #uvectinglbut notadvected velocity can be
calculated without averaging of the barotropic part using

75 _
577th + Ul/Ju, Uyu = Sglﬁnn + v(w.

Uyuy =

adv __ -1

Uy = 0%, + U[,u , US?V ! ———— 0 Yt, + Uuu ,
(hZH)tu

(th)ut
whereH; ;1 =max(H; 1,1, H_1;,1), etc.

Vertical veI00|ty is calculated from the continuity equation (Eq. 9). This is required fc
both tracers and vectors, and must be computettat and ‘uuw’ points. The material
fluxes, F, = hou and F, = hyv, are intermediate quantities used in the continuity an
advection calculations.

For tracers

1
V.u= {ag(fu)ut‘f‘(s (Fw} +

—36 w = 0,
(h1h2)y ¢t

1
(ha)t
where(Fy)ut = () udluy s (Fw = (hl)uuvuf. The inclusion of the scale factors inside
the averages (rather than @), and (hy);, outside the averages) makes the advectin
velocity a weighted average; this needs to be done in order to ensure conservatio
mechanical energy when work is done by pressure gradient forces, as shown for sphe
coordinates by Pacanowski ([43], Sections 8.5 and 9.3) and for curvilinear coordinate
Appendix E. The vertical velocity is given by

Wi jk+l = Wijk-1 + (h3)k(Vh - Ui j
Wi = Wijkard = 0

For velocities

1 1
V U= m{ag(.}—u)tu +5r](~7:v)ut} + (h )

where(F)w = ()WY, (F)u = (hy) 2. The vertical velocity is given by

84‘ Wyuw = 0.

Witdjrdked = Wirdjrsk-3 + 0D(VH- Wiy s

Witdi+s) = Yitditikerts = O

3.3. Tendency Terms

(a) Advective Term for Tracers

1 1
—u-VT = ~hihoe {6 [(fu)utTtt |48, [(FowTe'] } — (ha): —— 8¢ (wtthttt )-
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(b) Diffusive Term for Tracers

Horizontal mixing

V. KVT) = - A2 st 5, (A M 5TH
( )= (hlhz)tt{ [( th)utétt:|+n|:< Hh_Z)tuntt

1 (KH)ttw
<h3>t8‘{ (ha)., ‘SJm}

Isopycnal mixing. The Cox [13] discretisation of the diffusion term with isopycnal
mixing is

1 1 .
V- (KVT) = (hiho) {3é |:(h2)ut ((AI + An)utt 8e Ter 4+ (A1 St (ha): S[Ttttﬂ):|

(hl)ut

1
[(hl)tu <(A| + At ———8, Tee + (A Sy)tut ha)e 8¢ Tt ﬂ}

1
( 2t

1
{( 1 SOttw 77— 5§Tttt CH (A Sy)ttw (o) 8y Tt }

1
" o (h )
1
+ (hs)tai{[Al (S%+ %2/) + KH}ttw (h ) SCTH'[} (30)

The term on the last line is tH€33 component, which may need to be calculated implicitly,
for reasons given below.

Cox [13] has shown that the numerical stability requiremétt, < hmhn/4(Sts)k,
places constraints on the maximum permissible isopycnal slope,

Kaz _ (ha)

A 2JA Gtk
_Kiz  Kas  Kar  Ks  hu(ha)
A A A A AA| Stk

wherehy is a characteristic horizontal grid lengtths)k is the thickness of the leveéd
where the slope is calculated, at®ds)k is the (accelerated) tracer time step for lekel
The first constraint is the more severe but may be avoided by treating the wholekof;the
term implicitly. When constant isopycnal diffusivity is used, the second constraint norma
limits the slopes used in the off-diagonal terms to abg@00 near the surface and20

in the deep ocean. The slopgx(0,) and (py/p;) are effectively limited by a minimum
condition placed on the magnitude of a modified vertical density gradient,

—pz = min[—pz, \/p% + p§/(mMax slope],
and are calculated as
(&) = —pxpz/ (;55 + 6), (Sy) = _Pyﬁz/ (/35 + 6)7 (31)

wheree is a small number to prevent overflows. As slopes are requiragtgt“tut,” and
‘ttw’ points, and all three density gradients are required for each slope calculation, n
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gradients are required; these are computed in a manner analogous to that used in the (
model, as follows:

1 1 1
(ox)utt = ho) tSEptttﬂ (oyutt = (hout t5n,0ttt' , (Pt = (ha): — 8 Pt
u u
" 1 1
(ox)tut = (ho), —— 8ot (Pytut = H(Snpm’ (PDtut = (ha): ———8: Pt
u u
1 & 1 - 1
(ox)ttw = (D Septet””,  (Pyttw = o) ot (PDttw = ) ——— 8¢ ptt-

As slope limiting has the effect of creating spurious horizontal (and hence diapycn
diffusion, an alternative way of applying the constraint is to lidsitwhere slopes are steep,
as has been done by Geragsl.[22] and Danabasoglu and McWilliams [14].

The Cox scheme is normally stabilised with a background component of horizontz
oriented diffusion. The ‘background’ diffusivity is commonly set to a value of about half th:
of the isopycnal diffusivity, which greatly detracts from its modelling advantages. Griffie
et al.[25] have shown that the Cox scheme is inherently unstable because it does not pre
upgradient diffusive fluxes along isopycnals and because fluxes of the active tracers ar
balanced so as to ensure zero fluxes of potential density. They have proposed an alterr
numerical formulation which overcomes these problems and have implemented it in Vers
3 of the modular ocean model. Because of the complexity of the coding, the present aut
have not adapted the Griffies$ al. formulation to curvilinear coordinates at this stage.

Eddy-induced transport. When eddy-induced transport is parameterised by the Gen
McWilliams scheme, the effective ‘material’ fluxes used for calculating continuity an
advection of tracers are determined from the total transport velocity, which is the surr
the large scale velocity, and the eddy-induced transport velocity, i.e.,

(-Fu)ut = (hz)uuuuun + (h2)utuzt,

. (32)
(Fow = (hl)uuvuué + (hl)tuvt*w

The eddy-induced velocities are calculated from

Ul = —8; (AeS)utw/(3)t,
Utu = _Sf(AE Sy)tuw/(hB)t'

The slopes are computed from appropriately centred density gradients using Eq. (31)
they are not necessarily limited in the same way as in the isopycnal mixing term. T
x- andy-directed density gradients are averaged from those used in the isopycnal mi»
calculation,

(ox)utw = (px)uttC’ (oyutw = (loy)utt{’ (PDutw = (Pz)ttwé’
PO = Pt > Pww = Pt (PDww = Ptew -

Boundary conditions are satisfied by settiff&k S;)ur, and (Ag Syt to zero at surface
and land boundaries of‘grid cells.
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Eddy-induced transport can also be parameterised as a skew diffusive flux, as prop
by Griffies [24]. While recommending its implementation in conjunction with the Griffie:
et al. [25] isopycnal diffusion scheme, he also noted that it could profitably be used wi
Cox’s [13] numerics. Following Eq. (15), this can easily be done by substitufing-(Ag)
for A, in the Ky3 andK 3 diffusivity tensor components and\( + Ag) for A, in the K3,
andKs, components in Eq. (30).

(c) Hydrostatic Pressure Gradient Term

1V|5— 1 15;3” 15;3_50
P nET Lo (hl)uug ttt’(hz)uu LA

Here, Bt = fi j .« is the hydrostatic pressure, calculated from

Bi i1 = 9lpi.j,1(3)1]/2,
Bi.ik = 9lpijk-1(3)k—1 + pi j k(N3] /2 + Bij k-1,

where o is thein situ density (for accuracy, referenced in practice to an arbitrary leve
dependent value, which has no effect on the horizontal gradients).

(d) Advective Term for Momentum

—(u-Vu)y = —m{ag [(Fu)tu Uue’ ] + 8, [(Fo)ut Una] }

~ (L1t — Lovua)vus — (h%(s; (. (33)
—(u-Vu) = —m{ag [(Fwbu® | + 8, [(Fo)uvw”] }

+ (L1Uyy — Lovyy)Uyu — (h—;ta; [Wuuwud’ ] - (34)

Fu andF, are as given in Section 3.2, and the multipliers in the metric terms are

1 1

Li=——38("Du, Li=—"—
! (hth)uu (e 2 (h1h2)uu

88;‘ (h2)tu~

(e) Friction Term

1 (KM)uuw
Fn ™ ey [ ey,

The horizontal part may be represented in terms of strain rates,

8¢ (Um)uut | » m=1,2

1 1

(Fi)1 = (hT%)uusé (h3AmD1),, + (hTz)uu‘Sn(hiAM Ds) -
1 1

(Fi)2 = (th)uu(Sé (h3AmDs),, — m‘sn(hEAM D7)y
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) i) () o]
D u= e 8 J— — _ 5 ,
( T)t (hl>tu s<hZ>uu (hZ tu ! (hl)tt

)it (), o]
Do = (2) & > 1y s ,
( S)t <hl tu § h2 uu + h2 tu ! (hl)t'[

)] - (), ()
D ut — — 5 —_ —_— 8 —_—
(Bru <h1 u L) 2] \h1/

)]~ (), ()
Dout = [ — 1) — Sl — .
(Bl <h1>ut S[(hZ)tt - h2 ut ! hy uu
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In the Smagorinsky scheme, the total deformation rates, and hence the viscosities
also evaluated aut’ and ‘tu’ points, using the equations given in Section 2.8(d). Trace
diffusivities may be calculated in a similar fashion, except that the order in which tl
subscriptsut’ and ‘tu’ appear in the equations will be reversed.
Alternatively, the momentum diffusion form may be used,

(Fr)1 =

(Fr)2 =

where

1 [ h, 7 r hy
m {55 _(AM hl>tu (SE(Uuu)_ + 6, _<AM hz)m 8n(uuu)] }

+(M1/2) 82§Uuu - (M2/2) 5ZnUuu -+ NyUyy + Novyy,

1 {5 -(A hz) 8 ( )- +6 -<A hl) 8, ( )”
- — )] — n (U
(h1h2)yy é_ Mhl tu s J 7)_ Mh2 ut o

—(M1/2) 52§Uuu + (MZ/Z) 32nuuu + Nyvyy — Nouyy,

_ 1 2Am
T (Mo Km) gt 5”“‘“““‘} ’

M, = ! [(Zﬂ> 8¢ (h) +8(A)]
2_(h1h2)uu h2 uus 2)tu 13 M)tu | »

No= {_ ! 3[(A E) 5 (ho) }__1 SKA .
v (hth)uu (h2)uu ¢ Mhl tu s (hl)uu ! Mhz

1

N> =
2 (hth)uu

sl (an) s h sl
{+(hz>uu f[( Mh_l)w nl 1)“} () ”K ha

(35)

) 5n(h1)uu:| },

ut

> SE(hZ)ttjl }
ut

These coefficients correspond to the continuous forms given in Section 2.8(e); howe
M1 and M, are divided by 2 in Eq. (35) because the velocity differences are taken o
a double interval. When variable viscosities are used with these equafignsjust be
evaluated atit, tu, anduu points and, if specified as a field at saty points, it will need to

be appropriately averaged, e.0Awv)ut = (Av)uu’ ands, (Av)ut = 582, (Am)uu.

The depth averaged vorticity forcing is calculatedtgtoints using Eq. (26),

— 1 " %
(Gt = m{(ss[(hﬂuu(Gu)uu ] - 5n[(hl)uu(Gu)uu ]}

3.4. Stream Function Calculation
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This is to be equated with an elliptical expression of the

stream function tendghcy,

Following the method used in the GFDL model, this function is computed from the stree
function tendencies of a five-point Laplacian star, using a matrix of coefficieat&w, Cn,

Cs, andCc, referring to the points ‘east,’ ‘west,’ ‘north, and *

south’ of, and ‘centred upon’

the point at which the differential expression is to be evaluated. The elliptical express

given in Eq. (28) may be written

e, = e () 20 o () o]}
k-Vx 22— = s |(=2) seut|+6|(=2) s
26ty (hahpe | ° [\ H hy ut eV "I\Hh2 /4, Wi
1 1h, t t 1h, o
— (hihy)i [(H h1>i+§,i(wi+l’j vii) <H hl)i;,j(%j Visi)
1hg ¢ ¢ 1hg ¢ t
+ (ﬁh_z) 43 (Wi,j+1 - Iﬁi,j) - (ﬁh—2>| i1 (‘Pi,j - wi,jfl)
3 2 i 2
=CeV¥i 1 +Cwi¥i 1 +Cn¥i 1 +Cs¥ij 1+ Cc¥i
where
S (i BN RELS
E= (hlhz)i,j H hy ey ’ W= (h1h2)i,j H hy i—3.] ’
1 1 hl) 1 < 1 h1>
C = - —_— 5 C == T L 3
N (h1hg);i (H h2 /i 41 S (hih2)ij \H hz /5 ;1
Cc = —(Ce+Cw+Cpn +Cyg),

andHiy12j = (Hiz12 12+ Hivi2j-1/2)/2, etc., as in the GFDL model. For evaluat-
ing residuals, the coefficients at the central points are equally weighted; this is done
multiplying each of the coefficients in the star by the facto€gd.

In the semiimplicit treatment of the Coriolis term, the above expression is combined w

_ o (28ty) f ’
K-V x (afk x §3u) = — 8<) S8k — 8
2 (h1h2)y ls H/uw W !
_ a(26tyy) (i) . (i

N '(f (f
H /. L1 H

2 2
(56,000 (&
H i+3.0+3 H

)i (8
i-3.i+3 H

)i;,,—;_

)i+%,j—1
)i

1 1
2173

f tg

(H> -55%

). . .+11 (V=)
I=3.0+3

' (Wit,j - 1//it,j—l)

. (1/fit+1,j - Wit,j)

. (Wit,j - Witl,j)}

= C\¥i i1+ Cs¥i 1+ Cevi iy + Cu¥i 1



CURVILINEAR BRYAN-COX-SEMTNER OCEAN MODEL 25

(from Eq. 29) by allowing the coefficients
=g (8,7 ()
cl, = _ %@V (i) _ (i
Y 2h)ig [\H /s \H
ol = _ 40w (i) _ (i)
2o [\H /gy \H/ ]

e g ()., )
ST 2(hihyig [\H /i \H/isi

to augment the corresponding unprimed coefficients derived earlier. Note that the cer
coefficient,Cc = —(Cg + Cy, + Cy + Cy), is easily seen to be zero.

The stream function tendency is obtained by extrapolating its field from the previous t
time steps as a first guess and solving the elliptic equation,

L(Yi;) - Gij =0.

4. COMPARISON OF ARCTIC SIMULATIONS

4.1. Models and Grids

Several simulations of the North Atlantic and Arctic Oceans were performed to comp:
aspects of the solutions in the northern high latitude regions produced by spherical
curvilinear coordinate models using a number of different horizontal grids. The spheri
model is, with some additions, the latitude—longitude MOM1 [45] and is essentially a spec
case of the more general curvilinear model described in the preceeding sections.

Three grids were used, a 2 latitude x 4.0° longitudesphericalgrid and two curvilinear
grids generated by methods described by Murray [38]. All grids were constructed globe
and would normally be used in integrations employing the full global domain. Howev:
because the focus of interest in the experiments described here is the grid-related differe
in the representation of the Arctic Ocean, each grid was truncated ata grid row né&<®.5
as to limit the model domain to just the Arctic and North Atlantic Oceans. The experimel
therefore specifically exclude any consideration of differences affecting the other oci
basins or the Bering Strait throughflow. The high latitude parts of the grids used are she
in Fig. 2. For the main experiments, spherical and curvilinear grids were used with
respective models; however, for comparing their computational performance, both mo
were run using the spherical grid and small time steps to avoid the need for filtering, wh
is not available in the curvilinear model.

There are essentially two curvilinear configurations which give useful grid alignments
the Arctic region without causing too much distortion (and cell size variation) over the rest
the globe. The first has the northern grid pole displaced from the Arctic Ocean into one of
subpolar continents. This type is represented bipalar grid constructed by reprojecting
the 2.5 x 4.0° spherical mesh so as to place the northern pole over CanadaVét&0ON
and the southern pole at 9 85'S (Fig. 2b). Some latitudinal compression was appliec
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FIG. 2. Grids used for the North Atlantic simulations: (a) spherical grid (with North Potepaint),
(b) bipolar grid, and (c) embedded grid. The cells of the full global grid array are shown in each case; hc
ever, only the truncated arrays were used in the integrations. In the curvilinear cases, (b) and (c), the li
of the truncated grids are indicated by heavy bold curves and the grid poles by black dots. Solid contours repr
the boundaries of oceangrid cells and dashed contours land cells. Note that the embedded grid is the same
the latitude—longitude grid south of 4.
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FIG. 2—Continued

near the northern pole in order to provide sufficient grid rows across the Greenland ¢
The grid was not designed to align contours with the equator, although this has been d
albeit with somewhat more distortion in the northern hemisphere, in the grids of Madec :
Imbard [34] and Smitlet al.[57].

In the second configuration, the single northern pole is replaced by two singularities s\
metrically located over Canada and Siberia. The contours of such a grid can be constru
either from families of confocal conic sections on a north polar stereographic project
or by rotating and reprojecting one hemisphere of a spherical grid into the polar car
a latitude—longitude grid. The latter method was used, givingrabeddedjrid in which
the rotated hemisphere has poles-&0° 4+ 90°E, 66°N and is joined smoothly over the
latitude range 68-708°N to a 2.5 x 4.0° latitude—longitude grid covering the rest of the
globe (Fig. 2c). This grid is essentially a transformation of the ‘equatorial transform’ gr
of Eby and Holloway [17], but it has a smoothed transition at the join and the potential fo
connection to the Pacific via the Bering Strait. Reprojection of the rotated hemisphere of
embedded grid into the region north of*®6results in a natural decrease of grid meridional
spacing toward the centre of the embedded region; this has the advantage of preve
large aspect ratios, which would have been produced had the meridional coordinate |
rescaled to give a constant grid spacing along the rotated grid equator.

Other aspects of the two models were made as similar as possible for all horizontal gi
Twenty-one vertical levels were used, with thicknesses increasing from 25 to 450 n
depth. After interpolation, level masks were adjusted so that channels and ridges sh
be resolved in the same way on all grids. Denmark Strait, Faroe Bank Channel, and F
Strait were made at least two tracer points wide at all levels above their sill depths (6
800, and 2350 m), and the Lomonosov Ridge was given a depth of 1900 m. Each mq
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was forced with annual average Hellermann and Rosenstein [29] wind stresses, and tre
were restored using a 30-day time constant to 10 m Levitus [33] winter fields, enhance:
the Greenland and Labrador Seas to correct inadequacies in the data. A 50-day relaxati
climatology was applied at subsurface points along the southern boundary; however, this
little influence in the polar region. Horizontal and vertical viscosities were made const:
at 3.5x 10° and 20 crd s™1, and horizontal friction was computed using the momentun
diffusion discretisation (which, in spherical coordinates, is just the form normally used wi
constant viscosities in the GFDL model). Isopycnal diffusion and eddy-induced transp
implemented as a skew diffusion [24], were applied to tracers using Cox—Redi humer
with isopycnal and thickness diffusivitiey = Ag = 1 x 10’ cn? s~%, and no background
horizontal diffusivity was used. Vertical diffusivities were based on the profile of Kraus [3:
and varied between®cn? s~! near the surface anddlcn? s~ at 4150 m; the low surface
values were considered appropriate in the Arctic Ocean, which is highly stratified in 1
upper layers.

Latitude—longitude integrations necessarily differ from curvilinear integrations in or
important respect, the need for special modifications to overcome computational proble
in the vicinity of the North Pole. This, of course, was one of the main motivations fc
implementing a curvilinear coordinate scheme. Nevertheless, to allow a fair comparison.
thought it important to choose a latitude—longitude formulation affected as little as possi
by numerical artifacts. The problem of computing exchanges at the North Pole was sol
by including a special prognostic calculation for a composite polar-tracer cell; this avoi
the distortion caused by inserting an artificial island at the pole. The problem of small zo
grid spacing is normally solved by applying Fourier filtering. This circumvents the time st
constraints, but the process of filtering does tend to degrade the solution somewhat. The
simulation, or at any rate the one most closely comparable to the curvilinear simulation:
achieved by running the model without filtering, but at the expense of an enormous incre
in the number of iterations. For most studies, such an expense could not be contemplz
however, for the purposes of this demonstration, it would be possible to run an asynchror
‘equilibrium’ integration without filtering. Because the time step implications are so gre:
we decided to run the latitude—longitude model both with and without filtering to he!
distinguish the effects of filtering from those of using different grids.

In the filtered experiment, Fourier filtering was applied north of a reference Iatituc
of 80°N. The usual practice is to truncate Fourier components having a wavelength |
than two grid intervals at the reference latitude; however, in this experiment, the truncat
formula was modified so that the number of waves retained was given by

m < (n; /) SiN"1(COSp/ COSPres),

wheren; is the zonal periodicity and is the filtering reference latitude. This has been
recommended by Murray and Reason [40] on the grounds that it should maintain a cc
tant time step limit for all rows in the filtering region, which is more efficient than usin
the standard truncation, which does not; it thereby obviates the need for tapering mix
coefficients downward near the pole, an expedient which introduces some artifacts o
own.

Each experiment was integrated for 80,000 days (220 years), with acceleration fac
increasing this period by up to factors of eight at depth. In the curvilinear and filter
latitude—longitude integrations, both of which had an effective minimum grid length of
little less than 1, the momentum time step was made 20 min and the tracer time step 2 de
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requiring 40,000 iterations. In the unfiltered latitude—longitude integration, the time ste
had to be restricted to 1 min and 3 h, respectively, requiring 640,000 iterations.

4.2. Results

Figs. 3a—3c show the 139 m velocities for the spherical, bipolar, and embedded
simulations. All plots show the same major currents, which in most cases correspond to tt

1.0 CM/s

e
0.50 CM/3

FIG. 3. Velocities at 139 m from simulations performed on the (a) spherical, (b) bipolar, and (c) embedc
grids (450-day streamlines); also, (d) velocities at 545 m for the embedded grid simulation (900-day streamlir
The scale vectors are correct near the centre of the projection.
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observed (see, e.g., [16, 46]). The main currents in the Arctic basin are the Beaufort C
and the Transpolar Drift Stream, which diverges from it and feeds into the East Greenl:
Current (EGC) and subsequently the Subpolar Gyre. The Beaufort Gyre occupies more o
Arctic than ice drift observations would suggest, and the Transpolar Drift Stream has b
contorted into adouble bend (cf., [10]). The North Atlantic Current enters the region from
south and branches into the Irminger Current, which merges with the Subpolar Gyre sout
Iceland, and the Norwegian Current, which further divides, with a branch flowing east ir
the Barents Sea. The remainder of the Norwegian Current subsides and either merges
the EGC or undercuts it in the northward flowing West Spitsbergen Current (WSC). The
subsurface currents are seen in the 545 m velocities, which are shown for just the embe
grid case in Fig. 3d; they are also present in the other simulations. The subducted Atla
water is seen to spread out into the Arctic basin in a broad eastward-flowing counter-curr
Evidence that this movement occurs in reality is provided by the presence of a warm ton
extending along the Siberian side of the ocean in the field of temperature at the depth o
temperature maximum [59]. The southward-flowing modelled current was intense in-
Denmark Strait at the 545 m level, which is just above the sill, but diminished horizonta
as the water overflowed into the depths of the Irminger Basin; the streamlines appear
because they are integrated from the horizontal fields. At deeper levels (not shown); the
in the Greenland and Norwegian Seas was predominantly southward toward and acros
Faroe—Scotland Ridge.

The currents were rather weak in Fram Strait and relatively too strong in the Bare
Sea. In these simulations, the EGC carried 1.4-1.6 Sv & 8% m?® s!) and the WSC
0.6-0.7 Sv, as compared to 3-5 Sv for each in the observations [59] and 4 Sv in horizo
mixing simulations, which we also performed. In the Barents Sea, the eastward trans
of 0.8-1.0 Sv was of the right order, but the flow was too broad to correspond to the co:
following Murman Current and there was no feature corresponding to the west-flowi
Percey Current on the Spitsbergen side. (By contrast, the horizontal mixing simulatit
did show a weak but cyclonic circulation.) The above defects are not wholly attributable
the use of eddy-induced transport. The currents flowing through Fram Strait are espec
complex and are separated both vertically and horizontally, with currents at all levels flow
northward on the east side of the strait and southward on the west side [58]; this comple
is further compounded by the observation that the WSC divides into several branches,
of which recirculates into the EGC within the strait [48]. Because of the lateral viscosi
and diffusivity necessary for computational stability, most numerical models cannot reso
currents which are closely separated in the horizontal, much less represent any recirculz
within the strait; below about 500 m, Fram Strait is represented by only a single line
velocity points anyway. The consequences of this were that in the simulations (1) the W
which Aagaarat al.[2] found to contain two cores 0f3.5°C water between 50 and 200 m
and within 200 km of Spitsbergen, was forced to flow wholly beneath the EGC and at dep
exceeding 250 m, and (2) all southward transport was above this depth, thus precluding
saline outflow of deep Arctic Ocean water which Aagagral.[1] found over the Greenland
continental slope and which they argued might be important for preconditioning convect
in the Greenland Sea. Experiments with reduced lateral mixing coefficiagts=(1.2 x
10°cn?s™t, andA; = Ag = 0.5 x 10’ cn? st in the Arctic region) produced no change
in this behaviour but did generate cyclonic gyres in the Siberian marginal seas and a clc
cyclonic counter-gyre in the deeper levels of the Arctic Ocean.

Some vertical velocity fields are shown in Fig. 4. The important features implied |
the horizontal velocity patterns are most clearly seen in those taken from the curvilin
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simulations. Fig. 4a is for the embedded grid experiment; the bipolar grid vertical velocit
were similar. Downwelling was general in the Greenland Sea and affected both the E
Greenland and Norwegian Currents. Subsidence also occurred where saline Atlantic w
cooled on passing through the Barents Sea, flowed off the Siberian Shelf. Throughout r
of the Arctic there was weak upwelling, intensified somewhat around the boundaries. In
filtered latitude—longitude simulation, these features were almost completely disruptec
the noisy stellate pattern caused by Fourier filtering [40]. In the unfiltered simulation, tl
unwelcome behaviour was much reduced, but it is important to note that it persisted in
area between the pole and Fram Strait.

High densities in the Greenland Sea were encouraged by the cold saline surface res
tion and hence positive surface density flux in that region (Fig. 5). In the Arctic the st
face restoration was cold but fresh (reflecting the effect of the northern rivers and Ber
throughflow) and, on balance, productive of low densities and stable stratification. The d
sity patterns at 139 m differed little between grids and resembled one another better
the Levitus fields. Both model and Levitus fields show quantitatively similar patterns
high density in the centre of the Greenland Gyre and the Barents Sea, a density contre
the southern Norwegian Sea, southward advection of lighter water in the EGC, and a |
of minimum densities in the Beaufort Sea. The isopycnals tended to follow the doubit
S-bend in the Transpolar Drift Stream in the model simulations, and densities were ra
lower than observed in the eastern Arctic, probably as a result of the weak inflow of sal
water through Fram Strait in the model. On the other hand, the rather suspicious ra
structures about the pole in the Levitus data (somewhat smoothed out by interpolatio
the curvilinear grid in Fig. 5¢) appear to be the consequence of extrapolating from spe
data on a latitude—longitude grid in their analysis.

It may be that the velocity fields shown in Figs. 3a—3c look rather different from or
another even though they show the same general features. If so, this has much to do
the different grid arrangements; the plots look much more similar when interpolated to
same grid. This certainly applies to the comparison of the embedded and spherical sirr
tions. The differences between these are shown in Fig. 6a. Velocity differences were lar
along the Greenland and Norwegian coasts and near the Siberian shelves; in these :
they were mainly due to the local effects of topography on the interpolation or the son
what more extended effects of differing channel geometry. Differences were very smal
the central Arctic Ocean, where there is no shallow topography, and south,of/l6€re
the two grids become the same. The density differences at this level were greatest ir
same areas as the velocity differences, and were mostly less than 0.2 sigma units. Co
ered beside this, the differences between the filtered and unfiltered simulations (Fig.
were small and diminished quickly beyond the first few grid rows around the pole. Hen
the impact that filtering would have had on th@seaticular spherical—curvilinear compar-
isons is fairly small; however, this would not necessarily apply in other types of moc
experiment.

The velocities in the bipolar simulation showed minor qualitative differences from tho
performed on the other two grids. The Subpolar Gyre was better defined and extended fu
into the Labrador Sea, as it does in reality. This was permitted by the greater north—sc
or grid zonal resolution of this grid near Canada. However, even with the mild compress
applied at higher grid latitudes, the east—west resolution of this grid is correspondin
coarser, which resulted in poor resolution of currents in the Greenland Sea and requ
Fram Strait to be made very wide at depth in order to accommodate just a single |
of velocity points. Because transports are mainly determined by other factors, the cur
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FIG. 4. \Vertical velocities at 470 m for (a) embedded grid and (b) filtered and (c) unfiltered spherical gr
models (contour interval ¥ 10~* cm s°%, with contours also at0.25, 0.5 x 10°* cm s%).
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FIG. 4—Continued

velocities were lower than in the other simulations. Other current features which differ
in this simulation were a considerable flow counterclockwise around the north of Icelal
which is not suggested by observations, and a slightly stronger flow through the Barents

The effects of the north—south exchanges can be seen in the potential temperature se«
taken from the Norwegian Sea and across the pole in the Arctic along the meriéian 2
178W (Fig. 7). Both model and Levitus sections show a strong thermal stratification
the upper layers and an Atlantic layer temperature maximum at about 500 m in the Ari
(i.e., north of 80). The maintenance of these features was aided by the actions of ed
induced transport and low vertical diffusivities in the model; horizontal mixing simulatior
(not shown) represented them poorly. The local maximum indicated by the sloping clo
contour near 78\ in some of the model sections is due to the westward movement of Atlan
water across them in the northern part of the Greenland Sea gyre and its subsidence i
WSC. This feature was not located so far north as in the observations, and this reflect:
inadequate representation of the WSC. The form of the closed contour was best represe
by the spherical model, possibly because of its greater zonal resolution, which allowe
least some slantwise separation of the north- and south-flowing current cores. Mode
temperatures in the Arctic Ocean proper were 0.6=D1t80 high in both the Atlantic layer
and at deeper levels. It is likely that the surface restoration was not providing a sourct
shelf water sufficiently cold and dense to penetrate the Atlantic layer and form Euras
Basin bottom water in the manner hypothesized by Aagetati[3]. The absence of such a
water mass with the right properties would account for the absence of a modelled southv
bottom current corresponding to the deep outflows through Fram Strait inferred by Sme
et al.[56] and Aagaaret al.[3].
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FIG.5. Potential densities at 139 m from (a) the embedded grid model, (b) the unfiltered spherical grid mo«
and (c) the Levitus data (contour interval 0.1 sigma units).

5. CONCLUSION

In Sections 2 and 3, the spherical Bryan—Cox—Semtner model was generalisec
accommodate orthogonal curvilinear coordinates. We emphasize the term ‘generalis
No changes were made to the dynamics, time stepping, or spatial finite differencing me
ods. The spherical model can thus be considered a special application of the curvilir
model. In practical terms, however, certain simplifications and differences in the centr
of metric coefficients which are possible in the spherical model result in slight differenc
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FIG. 6. Velocity and potential density differences for (a) embedded minus unfiltered spherical moc
(450-day streamlines, contour interval 0.05 sigma units) and (b) filtered minus unfiltered spherical model (1800
streamlines, contour interval 0.01 sigma units). Note the difference in scales.

between spherical and curvilinear model solutions when both are run on the same latitt
longitude grid. Also, differences in the order of operations and the way that storage
handled have a small impact on execution time, depending on the computer code, |
form, and optimisations. The curvilinear model requires some extra calculations, but tt
cost is largely offset by the precalculation of many combinations of metric factors
two-dimensional arrays in our model. In unfiltered tests carried outon an NEC SX4 compt
with code adapted from MOMZ1, the curvilinear model took up ga/(Blonger with some
options.

An important reason for adopting a curvilinear coordinate framework in global mode
is that it allows one to circumvent numerical problems associated with the presence of
North Pole in the Arctic Ocean; in particular, the effects of small grid spacing on comg
tational time steps. Fourier filtering is the method normally chosen to deal with this, anc
used in spite of its negative effects because of the very considerable alleviation of time :
constraints (by a factor of 1:16 in these experiments) that it provides, which far outwei
the extra computational time needed for carrying out the filtering calculations. Howev
in comparison with a curvilinear model, which does not require filtering anyway, a filter
spherical model confers no computational advantage, only the disadvantage of perforr
these extra calculations. Murray and Reason [40] showed that these could increase exec
time per time step by 17% in a global model in some formulations. Compared to this figu
the small differences in computing time due to coding differences between the spherical
curvilinear models referred to above are insignificant. Furthermore, a curvilinear grid
often be designed to cover the world ocean or a particular part of it with a smaller num
of grid points if a boundary can be made to encircle a large land mass.

To separate solution differences due to filtering from those specifically due to the use
a latitude—longitude grid, we decided to run both filtered and unfiltered simulations. T
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FIG. 7. Potential temperatures along the meridiafE-2178W from (a) Levitus and the (b) spherical,
(c) bipolar, and (d) embedded grid models (contour inten2i@, dashed contours for subzero temperatures).
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effects of filtering are more thoroughly dealt with by Murray and Reason [40], mostly usil
a horizontal mixing formulation; however, a couple of examples are given here from ed
induced transport experiments (Fig. 4b and Fig. 6b). In these simulations, filtering has
little noticeable effect on plots of the prognostic variables, but some spurious features s|
in difference plots and in vertical velocity fields. The relative freedom from distortion in tt
prognostic variables reflects the stabilising effects of using constant restorative forcir
and may not apply to coupled or synoptically forced integrations.

The impact of using various types of curvilinear grid was assessed by comparison v
the unfiltered latitude—longitude simulation. As Eby and Holloway [17] recognised, it
not realistic to require an exact correspondence of global simulations with realistic top
raphy because there will always be differences due to interpolation and topography w
different grids are used; this is just as true for different latitude—longitude grids—it is r
a characteristic of curvilinear grids per se. A reasonable requirement is that different g
should represent the same qualitative features and that there should be a fairly close qt
tative agreement in locations remote from topography. Murray and Reason [41], compa
simulations on global grids of varying resolution, found that differences between solutic
were very small in midocean provided that similar mixing coefficients were used, but tl
differences could be large near topography and sometimes noticeable at some dist
from important channels, such as the Drake Passage, if differently resolved on diffel
grids. In this connection, the Arctic is challenging for any model comparison because
the dominance of its topography and the complexity of the currents passing through it.

The simulations all showed the major current and water mass features known from
servation; however, they did show some deficiencies, and where these were concel
the correspondence between the models was closer than between models and ob:s
tions. In the Arctic, the Beaufort Gyre expanded too much into the eastern half of t
ocean, and the path of the Transpolar Drift Stream was unrealistically contorted. -
upper layers of the eastern Arctic Ocean were insufficiently warm, saline, and dens
a result of the weak inflow through Fram Strait. Because of the absence of a sourc
high salinity shelf water, the deep water was too warm and insufficiently dense to esc
into the Greenland Sea at the bottom levels of Fram Strait. It would be possible to rec
this defect to some extent by employing an interior relaxation or a stronger, prefera
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seasonal, surface relaxation over the Siberian shelves or by coupling to an ice mo
The most salient deficiency of both latitude—longitude and curvilinear grid arrangemer
and the one underlying a number of the deficiencies catalogued above, was the inak
of the models to resolve horizontally separated north- and south-directed flows throt
Fram Strait and, hence, adequately represent the differential advection that takes
through it.

In discussing the realism of the simulations, it should be emphasized that the purp
of the comparison was not to decide upon a suitable simulation for studying the physi
oceanography of the Arctic as such, a task more effectively accomplished using a
resolution ocean or ice—ocean model of just the Arctic; rather, it was to determine what ¢
of grid arrangement would be most suited to modelling a global ocean in which exchan
with the Arctic Ocean could be well represented while overcoming numerical probler
associated with its inclusion. Equilibrium simulations of the type used here provide a qu
but only partial answer to this question because the employment of constant restore
forcings tends to suppress climatic feedbacks and remote effects, especially in the Ar
The full benefit of avoiding filtering and using a well chosen grid arrangement is only like
to be seen when time-varying surface fluxes and coupling with ice and atmosphere
employed; however, such an investigation is outside the scope of this work.

In this study, we have considered the characteristics of integrations carried out o
latitude—longitude grid and on two curvilinear grids which represent two types of singular
placement that work well for representing the Arctic on a global mesh. In addition
removing the north grid pole from the ocean, these two grids have some attractive resolu
characteristics in the Arctic region, where they are much needed if Arctic processes ar
be adequately represented in a global model. The bipolar grid that we used has very ¢
north—south resolution but poor east—west resolution, even after some compression ir
grid meridional direction; this allowed a better representation of the West Greenland ¢
Labrador currents, but provided too little resolution in Fram Strait and other straits. Stron
compression might have overcome this deficiency. The latitude—longitude grid actually g
the best east—west resolution in Fram Strait. Both bipolar and spherical grids suffered fi
large aspect ratios. The embedded grid seemed to have the best overall arrangement
fairly isotropic and rather better than global average resolution in the Arctic region; tf
type of grid also has the advantage of being a latitude—longitude grid over most of the gl
and of therefore being amenable to latitudinal compression near the equator or elsew
if required. All simulations, however, represented the exchanges in Fram Strait simila
because all used topography in which the strait was artifically widened as necessar
include at least a single line of velocity points. For modelling this particular strait, itis cle
that more than one line of velocity points would be desirable.

APPENDIX A

Curvilinear Forms of Differential Operators in Transverse Curvilinear Coordinates

The gradient of a scalarand the vertical component of the curl of a veckymay be
written

én 0
vg=Y "4 (A1)
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8- VxV=(VxV)= (A2)

hihy \ 98 9%
The best expansion of the divergence operator depends on the nature of its argumen
transverse curvilinear coordinates, in which

3h1_37hz:37hg:37h?,:0 (A3)

g3 0E3 & &

the divergence of a vectdf, of the product of a tens@ and the gradient of a scalarand
of a tensotA are given by

1 <3h2V2 8h1V1>

10V;

V-V= ih [ Z (hoVy) + 52(hlvz)] + h73875§3’ (A4)
e[ (s )k (s )
da(nre)
V- A= {hllhz _aé(thﬂ) + ?(hlAﬂ) + Ax 22 Azzzgf] h13 BZ‘ ( 31)}
+ {hllhz :agmzAlz) i g(hlAZ» 4 Alzagf - Augzl] h—i%( 32)}
+ {hlih —g(thm) + ?(hlAzs)} + hig(Ass)} (A6)
APPENDIX B

Derivation of the Momentum Diffusion Form of the Friction Term
Expanding the expression foF4); in Eq. (23),
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After grouping, cancelling, and rearranging terms, the expression may be written
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By a similar process, or by symmetry, theterm may be shown to be
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Considering the coefficients, the above equations may be simplified to the forms giver
Eq. (24).

APPENDIX C

Grid Spacing and Orientation

Grid generation programs provide a file containing the longitudes and latitudes of poi
on the four subgrids of the grid array. Topography, forcings, and initial conditions a
interpolated to these points in the same way as for a latitude—longitude model. Wind stres
in addition to interpolation, require rotation to components parallel to the grid axes, 8
hence a knowledge of thadrientationat velocity points.

Calculation of derivatives in the model equations also requires a knowledge of g
spacing Although prognostic quantities and other quantities calculated from them are ol
defined on particular subgrids, the metric coefficients are required on all four subgrids; :
it is more economic to precalculate and store them independently than to average the
the model calculations. Here it is assumed that the metric factors are defined in a fi
difference sense in terms of distanceandy measured along- or n-directed coordinate
lines. For instance, the length of the northern boundary ofithjg {-grid cell, which passes
through pointsi(— 3, j + 2), (. j + %), and { + 3, j + 3) (see Fig. 1), would be

(Nijry = CeXijed = Xedjg ~ Xi-divd

It is not always convenient or possible to calculate grid spacings and orientatic
analytically; however, because these properties are normally designed to vary smoc
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across the grid, they can be fairly accurately approximated by those of the small circle
which fits three adjacent (half-integral) points alongxaar y coordinate line, as in the
example given above.

For many purposes, it is necessary to reinterpolate model output to a latitude—longit
grid. This is not so straightforward as interpolating to the curvilinear grid because the cul
linear coordinates of latitude—longitude points are not known and an analytical inversior
the grid-generation algorithm is not always available. The method that we have used |
search for the nearest curvilinear point to each required latitude—longitude point and t
determine the fractional position of the latter in curvilinear grid units, §@and». This
calculation is another that requires a knowledge of grid orientations and spacings, and f
it is constructed an inverse grid file, which can be efficiently used any number of times
interpolating from a particular curvilinear grid to a particular latitude—longitude grid (c
conceivably another curvilinear grid).

APPENDIX D

Reentrant Boundary Conditions

Global models normally have a simple periodic boundary condition,
Gi,j = Gitn;,j>

wheren; is the periodicity of the grid in the east—west direction. This is applied by includin
a repeated longitude column at the east and west boundaries. The northern and sou
boundaries are normally closed by land in latitude—longitude models, usually by Antarct
in the south and by a polar island or reclaimed Arctic land mass in the north; howe\
artificial reentrant northern (or southern) boundary conditions are possible, such as c)
north—south periodicity or reflection symmetry at some northern latitude (the ‘symmet
option in the GFDL model). A point inversion symmetry is the natural boundary conc
tion for continuity across the pole, but in practice, continuity is achieved using a spec
computation for a composite polar cell, as mentioned in the Introduction.

In curvilinear models, singularities are normally placed over continents so that the nee
give special consideration to the pole is avoided. Bipolar curvilinear grids have just an ‘ec
west’ periodicity, but grids with more than two singularities may require more complicat
reentrant conditions. The conic section and embedded rotated grids of Murray [38] h
three singularities and may be mapped onto a single rectangular array with three reen
boundaries: the periodic east and west boundaries, and a northern boundary defined |
arc which joins the two northern singularities and across which the grid meridians pe
From the indices given in Fig. 8 the continuity condition may be expressed as

qlJ = qini /2+2isym—1,2]pole— ] »

whereisym is the (integral or half-integral) index of the symmetry meridian §id is the
(integral or half-integral) index of the northern grid parallel. In the model as we have us
it, the transpolar arc has been a prognoastirid row (jpole half-integral), and one repeated
t-grid row and one repeatadgrid row beyond the polar arc have been included to enab
the computation of derivatives of quantities in the penultimate rows.
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i=n2+ig, 1=n/2+i,-0-iy,)

j= jpole - (j _jpole)
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FIG. 8. Scheme of grid lines and indices near the northern array boundary of an embedded rotated or ¢
section grid. The symmetry meridian and the bounding grid parallel (joining the singul&i@esl P,) are shown
as bold dashed lines. Representative coordinate axes and indices are shown as seen from below and abc
boundary.

APPENDIX E

Integral Relations

In order to prevent nonlinear instabilities and cumulative errors, the finite differen
ing scheme of Bryan [6] has been designed to conserve certain first and second mot
guantities. Semtner [53] has shown that the nondissipative terms conserve global integ
of tracer, tracer variance, and energy in the spherical coordinate model. Following
approach, it is shown here that these integral constraints are also obeyed in the orthog
curvilinear model.

The time rate of change of the volume integral of tracer due to advection is

N 5 N 6
D dm—r == D> An Vi,
m=1 =1i=1

wherea, is the volume of celim, g, is its tracer value, and},, A\, V! are the tracer
value, area, and exit normal velocity on tiii face. This integral is 0 becaus, is 0 on
ocean boundaries and antisymmetric with respect to adjacent cells. The result place
restrictions on the way thag,, Al , or ;| are calculated nor does it require that éheand

V! be calculated consistently; it is thus equally applicable to curvilinear grids. The quant
actually conserved ingn:l am0m/3t, which allows for a possible variation of time step
i.e., 8tm) across the array. The volume integral of the tracer variaﬁg?éil amQ3/8t, is
also conserved provided thalf, = (qm + q.)/2, whereq],, is the value in the cell sharing
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theith face, since
2 N 6
> e I =S a2 = PRHRLET
m=1 m=1i=1
N
==Y ¢ Z AV, — Z Z Ay VinGmGy = 0. (E1)
m=1 i=1

m=1i=1

The first term of the expansion is 0 by continuity. The second term is 0 begagseis
symmetric andV,! is antisymmetric for pairs of adjacent cells, and becayse= 0 on
boundaries. Once again, there is nothing that restricts this conclusion to a particular ¢
dinate system. The familiar treatment reproduced above makes the implied approxima
that errors due to the time discretisation are negligible, i.e., that

(5202)™ = (G0 4+ g0 ) (gD — gt Y) = 2(gn?) Vsq® ~ 29 5q .

This approximation requires that measures be taken to stabilise and suppress the com
tional mode in time which may be present in the leapfrog scheme.

In the momentum equations, there are two terms which should conserve variance,
is to say kinetic energy—the advective term and the Coriolis force term. The advect
term for each component contains an elliptical or ‘flux-form’ part and a metric part. Tl
former conserves variance for reasons similar to those in the case of scalar variables e;
that, as Semtner pointed out, a no-slip conditio & 0) is necessary to make the cross
term (in the expansion of Eq. E1) zero, sinée may be nonzero. The metric terms for
the two components also conserve variance, but only in combination. From Egs. (33)
(34),

2 N 6
Zamu =D 2A, Vi [Un Uy + vyt

m=1 m=1i=1

+ Z 20m{Um[—(L1Um — L2vm)vm] + vm[(L1Um — Lovm)um]} =0

m=1

The work done by (the explicit part of) the Coriolis tera, - fvm + v - (— fup), is also
zero when both components are included, and this applies at every point.

Work may be done by hydrostatic pressure gradient forces when they are not geostrc
cally balanced. Semtner [53] showed that this is equal to the work done by buoyancy for
i.e., to the potential energy loss, so that total energy is conserved in this process. In
curvilinear case, the work done by the pressure gradient forces is

1 N
_p_ Z(hlhz)uu(h3)t [Uuu 55%”/(hl)uu + Vuu 8nm€/(h2)uu]

m=1

1 N
= > (ha)e [(Uhg)uy 8 Pre” + (Wha)uu 8, Put” |

m=1

= ——Z(hsh 8:(UNuy’ + 8, (WhDuu | Pt

m 1
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The second step results from a rearrangement of the expanded terms arounidh is
possible since normal velocities across ocean boundaries arevice{13]). On applying
the hydrostatic relation and rearranging terms araunithe work done by buoyancy forces
may be written

N N N
- 1 1
—% > (hiha) wie pu(ha)’ = . > (1ha)ie weey, 8¢ P = 2 > (haho) 8; witay Pree-

m=1 0 m=1 m=1

The two quantities are equal provided that

(h1h2)tt 8; wity = —(ha)y [5§(Uh2)uu" + 3;;(Uh1)uus]-

This will be recognised as a form of the continuity equation. As in the spherical mod
the discretisation requires the horizontal mass fluxascadl faces to be represented as
weighted averages.

Eddy-induced transport conserves tracers and tracer variance when parameterisec
Gent—McWilliams advection, since no restrictions are placed on the interfacial velocit
in Eg. (E1) except that normal velocities must be zero at boundaries. It thus conserves
energy; however, it is not designed to conserve mechanical energy, but rather to dissi
it in a manner characteristic of the breakdown of baroclinic instability: there is thus |
need for eddy-induced velocities to be weighted in any special way, and it is convenien
use values calculated at cell interfaces, as has been done in Eq. (32). Skew diffusion
conserves tracers, but its variance-conserving properties depend upon the numerics
for the rotated diffusion tensor. Griffies [24] shows that skew diffusion conserves variar
when formulated using the Griffiest al. [25] numerics. When implemented using Cox
[13] numerics, skew diffusion does not conserve tracer variance; however, it can reduc
eliminate (inthe case &g = A) theantidiffusive tendency of the isopycnal diffusion part
of theK 3 andKy3 terms. This has the practical benefit of helping to suppress checkerbo:
waves in the tracer fields, which may be excited by dispersion or instability in the C
isopycnal scheme: the Gent—McWilliams parameterisation is unable to do this since it
component of centred advection, which has no effect on waves at the grid scale.
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