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Continuous and finite difference forms of the governing equations are derived for a
version of the Bryan–Cox–Semtner ocean general circulation model which has been
recast in orthogonal, transversely curvilinear coordinates. The coding closely follows
the style of the Geophysical Fluid Dynamics Laboratory modular ocean model No. 1.
Curvilinear forms are given for the tracer, internal momentum, and stream function
calculations, with the options of horizontal and isopycnal diffusion, eddy-induced
transport, nonlinear viscosity, and semiimplicit treatment of the Coriolis force. The
model is designed to operate on a rectangular three-dimensional array of points and
can accommodate reentrant boundary conditions at both ‘northern’ and ‘east–west’
boundaries. Horizontal grid locations are taken as input and need to be supplied by a
separate grid generation program. The advantages of using a better behaved and more
economical grid in the north polar region are investigated by comparing simulations
performed on two curvilinear grids with one performed on a latitude–longitude grid
and by comparing filtered and unfiltered latitude–longitude simulations. Resolution
of horizontally separated currents in Fram Strait emerges as a key challenge for
representing exchanges with the Arctic in global models.c© 2001 Academic Press
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1. INTRODUCTION

The convergence of meridians at the North Pole in latitude–longitude models creates two
major computational problems for simulations in which the Arctic is included. The first is
that of integrating the prognostic equations at the polar point. The difficulty is normally
obviated by including a row of land points at the northern array boundary; however, this
creates a small ‘polar island,’ which, even when reduced to a single velocity point, obstructs
the transpolar flow and distorts the tracer fields. These defects may be quite important in
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models with coupled sea-ice and time-varying surface flux forcings. Although currents in
the Arctic Ocean are sluggish, they have the potential to affect other parts of the world ocean
through the export of sea ice and the water mass transformations that occur in the Greenland
Sea. We have found [40] that the need for a polar island and the distortion it produces can be
avoided quite satisfactorily by treating the polar grid row as a single composite prognostic
tracer point, as has also been done in the ocean component of the NCAR climate model
[42].

The second problem is the severe limitation on computational time steps imposed by the
small zonal grid spacings that occur near the pole. This is usually dealt with by truncating or
selectively damping the shorter zonal wavelengths, which most limit the time step, although
other methods have recently been proposed for ocean applications, namely variable time
stepping [60] and using a reduced grid [64]. Fourier filtering is the method most commonly
employed to avoid the time step restriction in ocean models, but this can be an expensive
remedy and one which tends to produce spurious features in the solution. These can be the
result of Gibbs phenomena or the separate filtering of variables and may take the forms
of static instabilities, noisy vertical velocities, and small perturbations in the horizontal
velocities [40].

While both the problems discussed above have ‘fixes,’ a highly convergent grid with
large cell aspect ratios and rapid cell size variation is not ideal for numerical modelling.
Aside from the impact that these properties may have on truncation errors, such a grid is
computationally inefficient and represents topographic and ocean features poorly. Reducing
the meridional grid spacing in step with the zonal spacing, as on a Mercator grid, can (up
to some latitude at which it must be stopped) reduce cell distortion, but only at the cost
of creating a time step limitation in the meridional direction and compounding the grid
inefficiency.

The problems and costs of grid convergence can be circumvented altogether by designing
a grid that places the poles outside the ocean domain. Because suitable land antipodes for
them do not exist [38], a simple rotation of the conventional spherical grid does not offer
any advantage for modelling the global ocean. One solution, proposed by Deleersnijder
et al. [15] and Eby and Holloway [17], is to use acomposite-rotatedgrid, consisting of
a 90◦-rotated grid in the North Atlantic and Arctic Oceans joined at the equator in the
Atlantic to a conventional grid, which is used for the rest of the world ocean. This grid is
of very particular construction and suffers from a discontinuity in grid spacing at the join,
which has been recognized as a potential source of truncation errors at the equator. Tests
carried out by Eby and Holloway [17] and Cowardet al.[11] have indicated that the effects
of the coupling on the ocean solution and equatorial wave propagation would be small
and tolerable, and the two-grid scheme has been implemented in the ocean circulation and
climate modelling (OCCAM) project high resolution model [63]. However, the grid also
suffers from a possibly inadequate resolution in the Arctic when used in coarse resolution
simulations and from an incompatibility of subgrids at the Bering Strait.

A more general and flexible approach, and one which avoids these defects and limita-
tions, is the use of an orthogonal curvilinear grid. Several techniques are now available
for generating orthogonal grids with global continuity. A number of diverse methods have
been proposed for constructing global orthogonal grids by analytical and semianalytical
techniques about prescribed singular points by Murray [38]. Two meshes of semianalytical
construction have also been developed by other groups. One of these has recently been des-
cribed by Madec and Imbard [34] and is being used by the Laboratoire d’Oc´eanographie
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Dynamique et de Climatology (LODYC) (videMarti et al. [36]); the other has been con-
structed upon similar lines by Smithet al. [57] and is being used in the parallel ocean
program model. Each consists of a conventional southern hemisphere grid joined smoothly
to a distorted northern hemisphere grid with an off-axis pole and in such a way as to
overcome the shortcomings of the composite–rotated grid.

Curvilinear coordinates have already been used in some regional ocean models: in the
semispectral primitive equation model (SPEM) of Haidvogelet al.[27], and in a curvilinear
version [37] of the coastal ocean numerical model of Blumberg and Mellor [5]. The grids
required for both models are generated by a program in which the conformal boundary
fitting grid generation techniques of Ives and Zacharias [30] have been adapted for ocean
model grids by Wilkin [65] and Wilkin and Hedstr¨om [66]. Examples of meshes generated
by this program have been illustrated by H¨akkinen and Mellor [28] and Ezer and Mellor
[18]. In the applications for which the method was designed, the purpose of using curvilinear
grids has been to allow the bounding coordinates to follow coastlines, rather than to displace
polar singularities.

Boundary fitting methods have not yet been brought to the point of being able to create
global grids with matched reentrant boundaries; but this is a problem of grid generation, not
numerical modelling. There would be nothing to prevent one of the global grids mentioned
previously from being used in one of the regional models. These models contain some
attractive features, such as the use of terrain-following vertical coordinates, the implemen-
tation of advanced mixing schemes, and (in later versions) a free surface treatment. Because
they were designed principally to handle regional scale dynamics, they may not necessarily
be the most appropriate for global integrations. Both are discretised on an Arakawa C grid,
which gives a more accurate representation of the geostrophic adjustment when the Rossby
radius is resolved (e.g., [8, 61]), as it often is in regional models. For coarse resolution global
models, the B grid gives the better adjustment and allows a more exact solution when the
Coriolis term is treated semiimplicitly [6]. The stability condition on an explicit Coriolis
term is more likely to be a limiting factor in coarse resolution models than in fine resolution
models, where the momentum time step must be very much smaller than 1/ f .

The oldest and most familiar ocean model, and the one still most commonly used in
global modelling applications, is the one that developed from the work of Bryan and Cox in
the 1960s, with contributions by Semtner in the 1970s [6, 9, 12, 52]. Its principal defining
features are the use of an Arakawa B grid, constant depth levels, a rigid lid condition,
a no-slip lateral boundary condition, centred advection, and leap-frog time stepping. In
recent years, the model has been coded for efficient vectorisation and option selection in
the modular ocean model format at the Geophysical Fluid Dynamics Laboratory (GFDL),
Princeton, New Jersey [43–45]. In its modular format, the model has acquired and is still
acquiring a range of physical parameterisations and numerical processing options, but in its
characteristic features it remains broadly unchanged. Orthogonal curvilinear coordinates
have now been implemented or are being implemented in the model by other groups, e.g.,
by Smithet al. [57]; however, when we first contemplated doing this, the model was not
available in this form, and it was felt that, in view of its utility for global climate modelling, a
version should be written in orthogonal curvilinear coordinates, but incorporating the same
numerics, the same basic physical parameterisations, and the same ‘modular’ programming
style as the GFDL model. One of the purposes of this paper is to describe the resulting
model. The base code that we used for this conversion was the modular ocean model,
version 1 (MOM1); however, it is not the coding details, but rather the algebraic statement
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of the numerics that is presented here, and this would also be relevant to the conversion of
other spherical model codes derived from it.

The prognostic equations and the continuity equation involve vector differential operators.
The forms of these in curvilinear coordinates differ from their spherical counterparts, and
the task has been to rewrite the governing equations in terms of these operators. Continuous
forms of the governing equations are derived from the curvilinear forms of the differential
operators in Section 2. The finite difference forms derived from these are given in Section 3.
Supplementary details of the model and a brief treatment of its energetic consistency is given
in the appendices. The conversion has been limited to the case of orthogonal curvilinearity
in the horizontal and with constant levels in the vertical; the further generalisation to a
horizontally variable vertical discretisation, such as has been implemented in the spherical
model by Gerdes [21] and, more narrowly, in sigma and isopycnal coordinate models, has
not been attempted at this stage.

The advantages of using orthogonal curvilinear grids in an ocean model derive from three
properties they possess: (1) their ability to follow coastlines and avoid the need to carry out
wasteful computations at land points; (2) their ability to remove the north grid-pole from the
ocean domain and place singularities over land in such a way as to minimise convergence
problems; and (3) their ability to provide grid size variation beyond that available from
grid convergence and coordinate rescaling and, hence, a global grid with a high density
of grid points in a focal region and lower density elsewhere. The first of these has already
been exploited in regional models, as mentioned above, and the third has been investigated
by Murray and Reason [41] using a global grid designed to focus resolution in the Indian
Ocean sector. The model experiments reported in Section 4 focus on the second advantage,
that of using curvilinear grids for removing the north grid pole from the ocean domain and,
more particularly, the advantages of doing this for representing the Arctic Ocean in global
models. This was investigated by comparing simulations of the North Atlantic and Arctic
Oceans using one latitude–longitude grid and two curvilinear grids.

2. ORTHOGONAL CURVILINEAR FORM OF THE PRIMITIVE EQUATIONS

2.1. Curvilinear Forms of the Differential Operators

The primitive equations for an ocean obeying the hydrostatic, incompressible, and
Boussinesq assumptions may be given as

∂uH

∂t
= −(u ·∇u)H − f k × u− 1

ρ
∇H p+ (∇ · T)H + (Qu)H, (1)

∂T

∂t
= −u ·∇T +∇ · (K∇T)+ QT , (2)

∂S

∂t
= −u ·∇S+∇ · (K∇S)+ QS, (3)

∇ · u = 0, (4)

− 1

ρ

∂p

∂z
= g, (5)

ρ = ρ(T, S, p) ≈ ρ(T, S, z), (6)
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whereu is the velocity,T is the temperature,S is the salinity, f = 2Ä sinφ is the Coriolis
factor,ρ is the density,T is the viscous shear stress tensor,K is the diffusivity tensor,g is
the gravitational constant, (Qu)H, QT , andQS are source terms, and the horizontal part of
a vector quantity is denoted by the subscript ‘H.’ Eqs. (1)–(5) include vector differential
operators, whose form depends on the properties of the coordinate system adopted.

The curvilinear system is described by the two horizontal and one vertical nondimen-
sional grid variables(ξ1, ξ2, ξ3) ≡ (ξ, η, ζ ) and the metric coefficients or factorsh1 =
∂x/∂ξ1, h2 = ∂y/∂ξ2, andh3 = ∂z/∂ξ3, where(x, y, z) are arbitrarily referenced distances
measured along the grid contours. The local directions of theξ1, ξ2, andξ3 axes define the
unit base vectors(ê1, ê2, ê3). The horizontal velocity components(u1, u2) ≡ (u, v) are re-
solved parallel to the corresponding base vectors. By convention, the positiveξ1 andξ2 axes
are taken to be the ones most nearly aligned with the east and north directions over most
of the grid, and the contours that they follow are referred to as ‘grid meridians’ and ‘grid
parallels.’ In the special case of a latitude–longitude grid, the metric factors are

h1 = aδλ cosφ, h2 = aδφ,

wherea is the radius of the Earth. For consistency with the horizontal terms, the vertical terms
are also rendered in terms of grid variables and spacings, although the latter are constant in
the horizontal. The vertical coordinatesξ3 andz, and the vertical velocityu3 = w, are taken
to be positive in the upward direction in the differential and finite difference equations.

General orthogonal curvilinear forms of the vector differential operators are given in
Malvern ([35] Appendix II) and other standard texts. The transverse curvilinear forms used
in this paper are given in Appendix A.

2.2. Time Integration

The time marching procedure is exactly the same as in the GFDL model; however, the
method will be reiterated in order to introduce the major terms, whose curvilinear forms
are different.

Stability and second order accuracy in time are achieved by the use of a leapfrog scheme,
in which prognostic variables are integrated over a double time interval (2δt), i.e., from
time level(n− 1) to time level(n+ 1). Terms in the prognostic equations are normally
centred in time, except for the diffusive and viscous terms, which require a forward rather
than a centred time difference for stability [50]. To avoid decoupling of the solutions at
adjacent time steps, a forward or similar integration over a single time interval is substituted
at occasional time steps.

The prognostic equation for tracerTs(T1 = T, T2 = S) may be written

T (n+1)
s − T (n−1)

s

2δtts
= GTs,

whereδtts is the tracer time step, which may differ from the momentum time step,δtuv, and
may vary from one level to another [7], and

GTs = −u ·∇T (n)
s +∇ ·

(
K∇T (n−1)

s

)+ Q(n)
Ts

combines all the known forcings. When the vertical component of the diffusivity tensor,
K33, is enhanced by tensor rotation or stability-dependent vertical mixing, the time step
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limit for diffusion, δtts ≤ h2
3/(4K33), may be exceeded, and the mixing term will require an

implicit solution of

T (n+1)
s − T (n−1)

s

2δtts
= GTs + αvdiff

∂

∂z

[
K33

∂

∂z

(
T (n+1)

s − T (n−1)
s

)]
.

Solutions are stable at all time steps provided that1
2 ≤ αvdiff ≤ 1. The vertical mixing of

horizontal momentum may be handled in the same way.
In the momentum equation, a rigid lid condition is imposed, which explicitly filters exter-

nal gravity waves from the solution. The contribution to the pressure that would naturally
arise from variation of the height of the free surface is replaced by a notional surface or
rigid lid pressure,ps. The total pressure at any point is the sum ofps and a hydrostatic
pressure,̃p, obtained by integrating Eq. (5); however, the surface pressure is not actually
determined. Sinceps acts on all levels equally, it affects only the depth-averaged velocities
(the external or barotropic mode) and has no effect on the depth-anomalous velocities (the
internal or baroclinic mode). By solving the external and internal modes separately and
taking the curl of the barotropic momentum equation, the surface pressure gradient term is
eliminated. Because the depth-integrated flow is nondivergent, the resulting equation can
be solved as an elliptical equation of the stream function tendency (see Section 2.9).

To overcome the restriction imposed by the need to resolve inertial oscillations, the
Coriolis term may be calculated semiimplicitly; this is done by replacing the time-centred
velocities in the explicit Coriolis term by a weightingα of their values at time(n+ 1) and
(1− α) of their values at(n− 1), viz.,

u(n+1) − u(n−1)

2δtuv
= − f k × [αu(n+1) + (1− α)u(n−1)

]+ (other forcings).

Using the notationδ2tu = u(n+1) − u(n−1), the tendency term may be written

δ2tu
2δtuv

= −α f k × δ2tu− f k × u(l ) + (other forcings),

where, to make the equation more general, the time level of the explicit part is defined as
l = n for explicit treatment (α = 0) andl = n− 1 for semiimplicit treatment (12 ≤ α ≤ 1).
Transferring the time change part of the Coriolis term to the left-hand side (LHS) and
combining the explicit part with the other known forcings, the momentum equation may
now be written

δ2tu
2δtuv

+ α f k × δ2tu = Gu − 1

ρ0
∇H p(n)s ,

where

Gu = −u(n) ·∇u(n) − f k × u(l ) − 1

ρ0
∇H p̃(n) +∇ · T(n−1) +Q(n)

u

and is taken to include, in addition to the explicit forcings, any implicit vertical friction.
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Because of the measures required to eliminate the surface pressure, the momentum equa-
tion, and hence the forcings, are divided into external and internal modes, viz.

δ2t ū
2δtuv

+ α f k × δ2t ū = Gu − 1

ρ0
∇H p(n)s , (7)

δ2tu′

2δtuv
+ α f k × δ2tu′ = G′u. (8)

The time steps for the two modes are normally the same, but need not be. When the Coriolis
term is semiimplicit, the internal mode is obtained by manipulation of Eq. (8) as

δ2tu′

2δtuv
=
[

Gu − (2δtuvα f )k ×Gu

1+ (2δtuvα f )2

]′
,

the prime outside the bracket indicating the deviation from the vertical average. The external
mode is obtained by combining the two terms on the LHS of Eq. (7) and solving the equa-
tion as described in Section 2.9.

2.3. Continuity Equation

Using Eq. (A4) from Appendix A, the continuity equation (Eq. 4) becomes

∇ · u = 1

h1h2

[
∂(h2u1)

∂ξ1
+ ∂(h1u2)

∂ξ2

]
+ 1

h3

∂u3

∂ξ3
= 0. (9)

The vertical velocity,w, is calculated diagnostically by downward integration of the hori-
zontal divergence,

u3 = −
∫ ξ3

0
∇H · u h3 dξ ′3.

2.4. Advective Term for Tracers

The continuity equation allows the advective terms in Eqs. (2) and (3) to be rephrased in
flux form, which in the finite difference equations ensures conservation of the transported
quantity. For the tracerTs, substituting the fluxuTs for V in Eq. (A4) gives

−u ·∇Ts = −∇ · (uTs) = − 1

h1h2

[
∂(h2u1Ts)

∂ξ1
+ ∂(h1u2Ts)

∂ξ2

]
− 1

h3

∂(u3Ts)

∂ξ3
. (10)

2.5. Diffusive Term for Tracers

(a) Horizontal mixing. In many models, mixing is assumed to be transversely isotropic
with respect to the vertical axis, with a horizontal diffusivity,AH , being very much larger
than the vertical diffusivity,KH . The diffusivity tensor may be written

K =

 AH 0 0

0 AH 0

0 0 KH

 .
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Inserting this in Eq. (A5) yields

∇ · (K∇Ts) = 1

h1h2

[
∂

∂ξ1

(
AH

h2

h1

∂Ts

∂ξ1

)
+ ∂

∂ξ2

(
AH

h1

h2

∂Ts

∂ξ2

)]
+ 1

h3

∂

∂ξ3

(
KH

h3

∂Ts

∂ξ3

)
.

(11)

(b) Isopycnal mixing. Because tracers mix preferentially along isopycnal, not horizon-
tal, surfaces, it is becoming common for modellers to use a rotated form of the mixing
tensor, with a diffusivityAI in the isopycnal direction. Following Cox [13], the form of
the tensor originally proposed by Redi [49] is usually modified by the omission of certain
components in the small angle approximation, the identification of diapycnal as vertical
diffusivity (KH ), and the inclusion of a purely horizontal component of diffusivity (AH )
for numerical stability, then becoming

K =

 AI + AH 0 AI Sx

0 AI + AH AI Sy

AI Sx AI Sy AI
(
S2

x + S2
y

)+ KH

 , (12)

where

S=∇ρz=
(−ρx

ρz
,
−ρy

ρz
, 0

)
is the isopycnal slope vector and

(ρx, ρy, ρz) =
(

1

h1

∂ρ

∂ξ1
,

1

h2

∂ρ

∂ξ2
,

1

h3

∂ρ

∂ξ3

)
are the gradients of locally referenced potential density. The diffusion term then becomes

∇ · (K∇Ts) = 1

h1h2

{
∂

∂ξ1

[
h2

(
(AI + AH )

1

h1

∂Ts

∂ξ1
+ AI Sx

1

h3

∂Ts

∂ξ3

)]
+ ∂

∂ξ2

[
h1

(
(AI + AH )

1

h2

∂Ts

∂ξ2
+ AI Sy

1

h3

∂Ts

∂ξ3

)]}
+ 1

h3

∂

∂ξ3

{
AI

[
Sx

1

h1

∂Ts

∂ξ1
+ Sy

1

h2

∂Ts

∂ξ2

]
+[AI

(
S2

x + S2
y

)+ KH
] 1

h3

∂Ts

∂ξ3

}
. (13)

Note that in both Eqs. (11) and (13) above, the inclusion of the diffusivities inside the
derivatives allows them to be made spatially variable, which may be desirable for either
physical or numerical reasons.

(c) Eddy-induced transport.Gent and McWilliams [19] and Gentet al.[20] have para-
meterised the unresolved tracer transports due to the nonlinear effects of subgrid scale
eddies as an advection of tracer by an eddy-induced transport velocityu∗. In the latter
paper, this is taken to be proportional to the gradient of the logarithm of the thickness of
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(locally referenced) potential density intervals,∂z/∂p, and hence to the vertical gradient of
the isopycnal slope. The form proposed by Gentet al. [20] is

u∗H = −∂(AES)/∂z, w∗ =∇H · (AES), (14)

the two expressions being related by continuity.AE may be interpreted as a ‘thickness
diffusivity’ and has been absorbed into the derivative to ensure nondivergence of the depth-
integrated horizontal transport. Eddy-induced velocities normal to ocean boundaries are
made zero by settingAES= 0 at the boundaries.

Griffies [24] has pointed out that the eddy-induced advective term may be rewritten as a
diffusive term, which can be obtained by the easily verified manipulation

−∇ · (u∗Ts) = −∇H ·
(
−∂AES

∂z
Ts

)
− ∂

∂z
(∇H · (AES)Ts)

= ∇H ·
(
−AES

∂Ts

∂z

)
+ ∂

∂z
(AES ·∇HTs).

The terms imply the addition of an antisymmetric or skew diffusivity tensor to the symmet-
rical isopycnal diffusivity tensor (Kisop) given in Eq. (12), viz.,

 0 0 −AE Sx

0 0 −AE Sy

AE Sx AE Sy 0

+ Kisop

=

 AI + AH 0 (AI − AE)Sx

0 AI + AH (AI − AE)Sy

(AI − AE)Sx (AI + AE)Sy AI
(
S2

x + S2
y

)+ KH

 . (15)

In addition to simplifying the calculation, especially in the case whereAE = AI , when
K13 = K23 = 0, this formulation has some numerical advantages, which are discussed in
Appendix E.

2.6. Hydrostatic Pressure Gradient Term

The hydrostatic pressure is obtained by integration of thein situdensity, calculated from
the equation of state, viz.,

p̃ = −
∫ z

0
ρg dz′ = −

∫ ξ3

0
ρgh3 dξ ′3. (16)

Horizontal gradients are calculated from

− 1

ρ
∇H p̃ = − 1

ρ0

2∑
m=1

1

hm

∂ p̃

∂ξm
êm, (17)

where a constant density,ρ0, is used in the Boussinesq approximation.
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2.7. Advective Term for Momentum

Using the identity∇ · (uu) ≡ (u ·∇u)+ u∇ · u, and the fact that an incompressible
ocean is nondivergent, the momentum advection term can be written in flux form and
evaluated using the formula for the divergence of a tensor (Eq. A6), which in this case is
the open product,uu, viz.,

−u ·∇u = −∇ · (uu)

=−
{

1

h1h2

[
∂

∂ξ1
(h2u1u1)+ ∂

∂ξ2
(h1u2u1)+ u2u1

∂h1

∂ξ2
− u2u2

∂h2

∂ξ1

]
+ 1

h3

∂

∂ξ3
(u3u1)

}
ê1

−
{

1

h1h2

[
∂

∂ξ1
(h2u1u2)+ ∂

∂ξ2
(h1u2u2)+ u1u2

∂h2

∂ξ1
− u1u1

∂h1

∂ξ2

]
+ 1

h3

∂

∂ξ3
(u3u2)

}
ê2

−
{

1

h1h2

[
∂

∂ξ1
(h2u1u3)+ ∂

∂ξ2
(h1u2u3)

]
+ 1

h3

∂

∂ξ3
(u3u3)

}
ê3. (18)

Vertical velocity is calculated diagnostically and its advection (theê3 component) is not
considered. Thêe1 andê2 components of the momentum advection are each composed of
the following parts: the first two terms are thescalar-calculatedhorizontal advective terms,
i.e., calculated without reference to the rotation of the base vectors; the second two are
the horizontal advective metric terms; and the last is the vertical advection of horizontal
momentum. The metric terms take rotation into account by means of two grid-dependent
coefficients,L1 = 1/(h1h2) ∂h1/∂ξ2 andL2 = 1/(h1h2) ∂h2/∂ξ1, which are proportional
to the divergence of grid lines in the meridional and zonal directions, respectively. In
spherical coordinates,L1 = −tanφ/(aδλ), butL2 = 0, since the parallels do not converge.

2.8. Friction Term

Williams [67], Wajsowicz [62], and Smagorinsky [55] have derived the form of the
friction term in spherical polar coordinates by applying Phillips’ [47] approximation of
a shallow atmosphere (in which the Earth’s radius is represented by a constant,a, in the
formulae for the metric coefficients) to the tensor forms of the transverse isotropic stress–
strain rate relationships. However, the full expansion of the friction term in orthogonal
curvilinear coordinates was not given by these authors and is accordingly derived here. The
term is first derived in terms of strain rates; this has also recently been done in a somewhat
different fashion by Griffies and Hallberg [26]. It is further shown how the friction term can
be usefully rewritten in a ‘momentum diffusion’ form analogous to that used in spherical
coordinates by Bryan [6].

(a) Strain rate components in curvilinear coordinates.The expressions for strain rate
in orthogonal curvilinear coordinates are of the form (vide[4], Appendix 2)

e11 = 1

h1

∂u1

∂ξ1
+ u2

h1h2

∂h1

∂ξ2
+ u3

h1h3

∂h1

∂ξ3
,

e12 = h2

2h1

∂

∂ξ1

(
u2

h2

)
+ h1

2h2

∂

∂ξ2

(
u1

h1

)
.
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Because in transverse curvilinear coordinates some of the metric derivatives are zero
(Eq. A3), the components of the strain rate tensor simplify to

e11 = 1

h1

∂u1

∂ξ1
+ u2

h1h2

∂h1

∂ξ2
, e12 = h2

2h1

∂

∂ξ1

(
u2

h2

)
+ h1

2h2

∂

∂ξ2

(
u1

h1

)
,

e22 = 1

h2

∂u2

∂ξ2
+ u1

h1h2

∂h2

∂ξ1
, e13 = 1

2h3

∂u1

∂ξ3

[
+ 1

2h1

∂u3

∂ξ1

]
,

e33 = 1

h3

∂u3

∂ξ3
, e23 = 1

2h3

∂u2

∂ξ3

[
+ 1

2h2

∂u3

∂ξ2

]
.

Since the horizontal gradients of vertical velocity are very small in large-scale ocean appli-
cations, the bracketed terms in the expressions fore13 ande23 will be neglected from this
point on. It is convenient to express the horizontal strain rate components in terms of the
tension and shearing rates of deformation or strain,

DT = e11− e22 = 1

h1

∂u1

∂ξ1
+ u2

h1h2

∂h1

∂ξ2
− 1

h2

∂u2

∂ξ2
− u1

h1h2

∂h2

∂ξ1

= h2

h1

∂

∂ξ1

(
u1

h2

)
− h1

h2

∂

∂ξ2

(
u2

h1

)
,

Ds = 2e12 = h2

h1

∂

∂ξ1

(
u2

h2

)
+ h1

h2

∂

∂ξ2

(
u1

h1

)
.

(b) Form of the stress–strain rate relation.The stress–strain rate relation for a fluid
transversely isotropic with respect to the vertical coordinate,ξ3, is of the following form,
given by Williams [67], following Green and Zerna [23]:

τ11

τ22

τ33

τ23

τ13

τ12


=



C1 C2 C3 0 0 0

C2 C1 C3 0 0 0

C3 C3 C4 0 0 0

0 0 0 C5 0 0

0 0 0 0 C5 0

0 0 0 0 0 (C1− C2)/2





e11

e22

e33

2e23

2e13

2e12


.

(Note that the stresses here are in ‘kinematic units,’ i.e., the physical stresses divided by
ρ.) Kirwan [31], Williams [67], and Wajsowicz [62] have shown that, in an incompressible
fluid, constraints on the normal strain rates and deviatoric stresses,

e11+ e22+ e33 =∇ · u = 0,

τ11+ τ22+ τ33 = 0,

reduce the number of independent eddy viscosities from 5 to 3: the familiar horizontal and
vertical eddy viscosities,

AM = (C1− C2)/2, KM = C5,

and a third viscosity, variously defined as

ε = K2 = C3− C2 [31, 67] and ν = (C1+ C2)/2− C3 = AM − ε [62].
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In fact, the normal stress equation alone effects this reduction, since the equation

τ11+ τ22+ τ33 = (C1+ C2+ C3)∇ · u+ (C3+ C4− C1− C2)e33 = 0

imposes two constraints on the coefficients (viz.,C1+ C2+ C3 = 0 andC3+ C4− C1−
C2 = 0), as recognised by Smagorinsky [55], makingν = 3/2(C1+ C2). His normal
stress–strain relations can be rendered usingAM , KM , andν (=3× hisα) as

τ11 = AM(e11− e22)+ ν
(

1

3
∇ · u− e33

)
,

τ22 = −AM(e11− e22)+ ν
(

1

3
∇ · u− e33

)
, (19)

τ33 = −2ν

(
1

3
∇ · u− e33

)
.

The stress–strain rate relationships required in the friction term, after applying the incom-
pressibility condition to and rearranging the first two equations above, may be
written

(τ11+ τ22)/2 = −νe33,

(τ11− τ22)/2 = AM(e11− e22) = AM DT ,

τ12 = AM · 2e12 = AM DS, (20)

τ13 = KM · 2e13,

τ23 = KM · 2e23.

(c) Curvilinear form of the friction term. The frictional force is computed from the
divergence of the eddy viscosity stress tensor,T = [τmn], i.e.,

ρF =∇ · (ρT).

It is appropriate to apply the Boussinesq approximation at this point, allowingρ to be
eliminated from both sides of the equation. Only the horizontal components,F1 and F2,
figure in the equations of motion, and are given (from Eq. A6) by

F1 = 1

h1h2

[
∂

∂ξ1
(h2τ11)+ ∂

∂ξ2
(h1τ21)+ τ21

∂h1

∂ξ2
− τ22

∂h2

∂ξ1

]
+ 1

h3

∂τ31

∂ξ3
,

F2 = 1

h1h2

[
∂

∂ξ1
(h2τ12)+ ∂

∂ξ2
(h1τ22)+ τ12

∂h2

∂ξ1
− τ11

∂h1

∂ξ2

]
︸ ︷︷ ︸

FH

+ 1

h3

∂τ32

∂ξ3︸ ︷︷ ︸
FV

. (21)

SinceT is symmetric, only theτ12, τ13, andτ23 off-diagonal elements will hence be referred
to. It is convenient to reexpress the normal stresses inFH in terms of their sum and difference.
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For theξ1 component,

(FH)1 = 1

h1h2

{
∂

∂ξ1

[
h2

(
τ11− τ22

2
+ τ11+ τ22

2

)]
+ 1

h1

∂

∂ξ2

(
h2

1τ12
)+ ∂h2

∂ξ1

(
τ11− τ22

2
− τ11+ τ22

2

)}
= 1

h1h2

{
1

h2

∂

∂ξ1
h2

2

(
τ11− τ22

2

)
+ 1

h1

∂

∂ξ2

(
h2

1τ12
)+ h2

∂

∂ξ1

(
τ11+ τ22

2

)}
.

Adding in theFv term from Eq. (21) and substituting the stress–strain rate expressions from
Eq. (20), the friction terms become

F1 = 1

h1h2

{
1

h2

∂

∂ξ1

(
h2

2AM DT
)+ 1

h1

∂

∂ξ2

(
h2

1AM DS
)}

− 1

h1

∂

∂ξ1
(νe33)+ 1

h3

∂

∂ξ3
(KM · 2e13),

(22)

F2 = 1

h1h2

{
1

h2

∂

∂ξ1

(
h2

2AM DS
)− 1

h1

∂

∂ξ2

(
h2

1AM DT
)}

− 1

h2

∂

∂ξ2
(νe33)+ 1

h3

∂

∂ξ3
(KM · 2e23).

The second term in each expression is proportional to the gradient ofτ11+ τ22 and hence
τ33. Williams [67] has argued that sinceτ33 should be proportional tow′w′ the associated
eddy viscosity should be of the order ofAM in a highly convective regime but negligible in
a stably stratified atmosphere or ocean. (Williams made this comment in relation toε, but
clearly this should be understood to beν = (AM − ε), as it has been by Wajsowicz, who
has supported her argument with a scale analysis.) Accordingly, it has been the practice in
hydrostatic models to ignore this term, as is done here. With this modification, the horizontal
parts of Eq. (22) are equivalent to Eqs. (A3) and (A4) of Griffies and Hallberg [26], but
with the density dependence suppressed.

Substituting the expressions for the strain rate in Eq. (22) with theν terms removed,

F1 = 1

h1h2

{
1

h2

∂

∂ξ1

{
h2

2AM

[
h2

h1

∂

∂ξ1

(
u1

h2

)
− h1

h2

∂

∂ξ2

(
u2

h1

)]}
+ 1

h1

∂

∂ξ2

{
h2

1AM

[
h2

h1

∂

∂ξ1

(
u2

h2

)
+ h1

h2

∂

∂ξ2

(
u1

h1

)]}}
+ 1

h3

∂

∂ξ3

(
KM

h3

∂u1

∂ξ3

)
,

(23)

F2 = 1

h1h2

{
1

h2

∂

∂ξ1

{
h2

2AM

[
h2

h1

∂

∂ξ1

(
u2

h2

)
+ h1

h2

∂

∂ξ2

(
u1

h1

)]}
− 1

h1

∂

∂ξ2

{
h2

1AM

[
h2

h1

∂

∂ξ1

(
u1

h2

)
− h1

h2

∂

∂ξ2

(
u2

h1

)]}}
+ 1

h3

∂

∂ξ3

(
KM

h3

∂u2

∂ξ3

)
.

The friction term may be used either as given above or in the reorganised form given
in (e) below. In either case, the viscosities, being within the derivatives, may be made
variable.
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(d) Nonlinear mixing. Horizontal eddy viscosities in ocean models normally have to
be made rather unphysically large in order to satisfy overall stability criteria; however, they
may be reduced in most places if the local velocity field be taken into account. Smagorinsky
[54] scaled the viscosity to the horizontal deformation; his Eq. 4.2.2 corresponds to Eq. (22)
above but specialised to the case of a conformal (Mercator) grid (hism= 1/h1 = 1/h2)
and a viscosity parameterised as

AM = (kH1)
2DP,

wherekH is a nondimensional number (0.28 in his model),1 is a mixing length, and

DP =
√

D2
T + D2

S

is a grid-invariant quantity known as the ‘pure’ or ‘total’ deformation rate. In his scheme,
the tracer diffusivity,AH , was parameterised with the same dependence. In a later paper
[55], he provided the physical basis of the parameterisation and a tabulation of the many
different values corresponding tokH that have been used by other modellers.

For numerical reasons,1 is usually related to the grid scale, e.g.,1 = √h1h2 or1 =
max(h1, h2). Because the grid size normally differs in the two coordinate directions, Rosati
and Miyakoda [51] and others have scaled the viscosities in thex andy directions anisotrop-
ically, viz.,

τ11 = (AM)x DT τ12 = (AM)y DS,

τ21 = (AM)x DS τ22 = −(AM)y DT ,

where(AM)x = (kH h1)
2DP and(AM)y = (kH h2)

2DP; however, it should be noted that this
prescription violates the requirement thatτ21 = τ12 (i.e., that the stress tensor be symmetric,
and hence irrotational) and the nonconvective assumption thatτ33 = 0, since

τ11+ τ22 = −τ33 = [(AM)x − (AM)y]DT .

(e)Momentum diffusion form of the friction term.An alternative form of the friction term
may be obtained from a manipulation of the horizontal parts of Eq. (23) (see Appendix B);
this may be written

(FH)1 = ∇ · (AM∇u1)+
(

M1
∂u2

∂ξ1
− M2

∂u2

∂ξ2

)
+ (N1u1+ N2u2),

(FH)2 = ∇ · (AM∇u2)−
(

M1
∂u1

∂ξ1
− M2

∂u1

∂ξ2

)
︸ ︷︷ ︸

1st metric term

+ (N1u2− N2u1)︸ ︷︷ ︸
2nd metric term

, (24)

where

M1 = 1

h1h2

(
2AM

h1

∂h1

∂ξ2
+ ∂AM

∂ξ2

)
,

M2 = 1

h1h2

(
2AM

h2

∂h2

∂ξ1
+ ∂AM

∂ξ1

)
,
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N1 = 1

h1h2

[
− 1

h2

∂

∂ξ1

(
AM

h2

h1

∂h2

∂ξ1

)
− 1

h1

∂

∂ξ2

(
AM

h1

h2

∂h1

∂ξ2

)]
,

N2 = 1

h1h2

[
+ 1

h2

∂

∂ξ1

(
AM

h2

h1

∂h1

∂ξ2

)
− 1

h1

∂

∂ξ2

(
AM

h1

h2

∂h2

∂ξ1

)]
.

In spherical coordinates, where all metric derivatives with respect to longitude are zero, the
coefficients reduce to the forms derived by Murray and Reason [39] from the more general
equations of Wajsowicz [62], and in the constant viscosity case, to the form incorporated in
the model of Bryan [6]. In curvilinear coordinates with constant viscosity, the coefficients
reduce to forms equivalent to the somewhat more complex expressions (when expanded)
derived by Smithet al. [57].

The first term in each equation is the scalar-calculated Fickian diffusion of momentum; the
bracketed expressions which follow are what we shall call the first and second order metric
terms. An interpretation of the metric terms is possible in the constant viscosity case. The
first order metric terms take account of the rotation of the base vectors between neighbouring
points in thex andy directions respectively. In spherical coordinates this only occurs in the
x direction. The second order metric terms are proportional to velocities that are of like and
contrary name to the momentum component in which they are resolved. The like-named
(N1) components take account of the curving apart of the meridians and/or parallels, one
or the other of which will always occur on a doubly curved surface. The contrary-named
(N2) components are present when cell aspect ratios have a two-dimensional dependence
which cannot be removed by separate one-dimensional compressions; it may be shown
that this property does not exist in conformal or stretched–conformal grids (such as the
spherical grid, or the bipolar, confocal, or multipolar grids of Murray [38]) but may become
appreciable where subgrids of different properties have been patched or graded together.

In the above manipulations, it was possible to remove the mixed derivatives,∂2u1/∂ξ1∂ξ2

and∂2u2/∂ξ1∂ξ2, which, in a finite difference calculation for a point (i, j ), are the only ones
requiring velocity values at the four corner points,(i ± 1, j ± 1) of a nine-point template.
With their removal, the friction term only requires a five-point Laplacian template but has
complicated coefficients. When viscosities are constant in time, then so are the coefficients,
and their complexity is of no moment, since they can be calculated once and for all at the
beginning of the integration. But when viscosities are parameterised as in the Smagorinsky
scheme, strain rates are needed for calculating them even if they are not used in the friction
operator; moreover, the metric term coefficients, being functions of the viscosity gradients,
must still be computed at each time step. There is thus nothing to be gained from the
manipulation in terms of computational speed when this scheme is used; however, there
is another consideration. As discussed by Smithet al. [57], the five-point operator has
the advantage over the nine-point operator that it does not contain a checkerboard null-
space and is thereby able to damp noise at the grid scale. However, two-grid intervals are
eliminated in the manipulation only to the extent that they arise as an essential part of the
strain-based numerics; they survive in the first metric terms when there is grid curvilinearity
(which is present in both curvilinear and spherical coordinates) and/or viscosity variation.
The relative sizes of the two sources of computational mode are probably proportional to
the sizes of the main and first metric terms, and hence to the maximum wave numbers of,
respectively, the velocity variation (the grid scale) on the one hand and the grid curvature or
viscosity variation on the other. When the curvature is small (as it is usually designed to be on
most curvilinear grids) and the viscosity variation, if allowed, is likewise small (as it is likely
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to be when the viscosity is based on grid size), both having an inverse length scale of order
1/a, the second source will also be small and probably easily stabilised by the horizontal
viscosity of the main or ‘Laplacian’ term. When strain-dependent mixing is implemented,
both sources will be on the scale of the velocity variation, so it is not certain how effective the
stabilisation will be. This question probably warrants investigation. A formulation which
obviates all sources of null mode has recently been proposed by Griffies and Hallberg [26]
and embodies numerics similar to those implemented for isopycnal diffusion by Griffies
et al. [25].

2.9. Stream Function Tendency

Taking the curl of the external mode equation (Eq. 7) to eliminate the pressure gradient
term results in

k ·∇×
[
δ2t ū
2δtuv

+ α f k × δ2t ū
]
= Gz, (25)

where

Gz = k ·∇×Gu = 1

h1h2

[
∂

∂ξ1
(h2Gv)− ∂

∂ξ2
(h1Gu)

]
(26)

is the vorticity forcing, written in curvilinear form with the aid of Eq. (A2). The fact that
the depth-averaged flow is nondivergent allows the velocity to be represented as a stream
function,ψ , viz.,

ū = 1

H
k ×∇ψ = 1

H

(
− 1

h2

∂ψ

∂ξ2
,

1

h1

∂ψ

∂ξ1
, 0

)
, (27)

whereH is the ocean depth. Substituting this in the first term on the LHS of Eq. (25) gives

k ·∇× δ2t ū
2δtuv

= 1

h1h2

[
∂

∂ξ1

(
1

H

h2

h1

∂ψ t

∂ξ1

)
+ ∂

∂ξ2

(
1

H

h1

h2

∂ψ t

∂ξ2

)]
, (28)

whereψ t = δ2tψ/2δtuv is the time-discretised form of the stream function tendency. If the
Coriolis term is treated semiimplicitly, the second term is also needed,

k ·∇× (α f k × δ2t ū) = −α(2δtuv)k ·∇×
(

f

H
∇ψ t

)
= −α(2δtuv)

h1h2

[
∂

∂ξ1

(
h2

f

H

1

h2

∂

∂ξ2
ψ t

)
− ∂

∂ξ2

(
h1

f

H

1

h1

∂

∂ξ1
ψ t

)]
= −α(2δtuv)

h1h2

[
∂

∂ξ1

(
f

H

)
· ∂ψ

t

∂ξ2
− ∂

∂ξ2

(
f

H

)
· ∂ψ

t

∂ξ1

]
. (29)

Substituting Eqs. (26), (28), and (29) in (25) gives an elliptical equation inψ t , which may
be solved using any one of a number of relaxation methods.
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3. FINITE DIFFERENCE EQUATIONS

3.1. Grid Operations

On the Arakawa B grid, scalars lie at integral points in each horizontal direction, and
the velocity components lie at half integral points, i.e., at the corners of each tracer cell.
Because fractional subscripts cannot be used in programming, it has been the practice in the
spherical model to distinguish integral and half-integral one-dimensional coordinate and
metric arrays by the suffixes ‘t ,’ for tracer, and ‘u’ for velocity, respectively. In curvilinear
models, positions and metric factors are functions of two indices, each of which may assume
integral or half-integral values, and thus need to be defined on four subgrids, which, by way
of respect to the convention outlined above, may be designated by the suffixes, ‘t t ,’ ‘ ut,’
‘ tu,’ or ‘uu,’ the first letter referring to theξ direction and the second to theη direction;
thus,

λt t (i, j ) = λi j , φut(i, j ) = φi+ 1
2 , j
.

In the spherical model,t-cell coordinates are commonly obtained as averages of adjacent
u-cell coordinates. The concept of ‘t-centring’ has little meaning in the case of curvilinear
models, where grid orientation and spacing both vary in two dimensions; instead, the practice
that we have adopted is to obtain the points of the four subgrids from a smooth double
resolution grid created directly by the grid generation algorithm, as recommended by Marti
et al.[36]. While geographical positions are only needed for determining metric and Coriolis
factors at model initialisation, the double suffix notation is useful to indicate the centring of
quantities which appear in the model equations, e.g.,Ttt , uuu, (AH )tu, etc. The horizontal
grid conventions are illustrated in Fig. 1.

FIG. 1. Horizontal grid arrangement, showing coordinate axes at (i , j ), locations oft t , ut, tu, anduusubgrids,
t-cell (solid) andu-cell (dashed) boundaries, and sample variables.
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In the discrete forms of the model equations, derivatives are calculated with the aid of
centred differencing and averaging operators, e.g.,

(δξq)t (i, j ) = (δξq)i, j = qi+ 1
2 , j
− qi− 1

2 , j
= qu(i, j )− qu(i − 1, j ),

(q̄ξ )u(i, j ) = (q̄ξ )i+ 1
2 , j
= 1

2
(qi+1, j + qi, j ) = 1

2
[qt (i + 1, j )+ qt (i, j )].

(To minimise multiple subscripting, the unsubscripted forms of grid variables and velocity
components,ξ, η, ζ,u, v, andw, have been used in this section.) The above usages are
readily extended to two dimensions. Because both averaging and differencing operations
result in a quantity referenced to a grid position (inξ or η) half an index unit from its
progenitors, it is not always necessary to specify what value ofi or j it refers to, but only
to know upon which of the four subgrids it is located. The operators for a two-dimensional
quantity behave as

δξqtt = (δξq)ut, qut
η = (q̄η)uu,

and they may be applied consecutively, viz.,

δξ δηqtt = δηδξqtt = (δξ δηq)uu,

δηqtt
ξ = δηqtt

ξ = (δηq̄ξ )uu,

δξ δξqtt = (δξ δξq)t t .

A consecutive averaging and differencing in the same direction results in a difference over
a double interval,

δξqtt
ξ = δξqtt

ξ = 1

2
(qi+1, j − qi, j + qi, j − qi−1, j ) = 1

2
δ2ξqtt = 1

2
(δ2ξq)t t ,

where(δ2αx)i = αi+1− αi−1..
The vertical discretisation is the same as for the spherical model, with prognostic quan-

tities being computed at integral ort levels (cell centres) and vertical velocities and fluxes
at half-integral orw levels (cell interfaces). Vertical coordinates are referenced to ‘t ’ and
‘w’ grids using a single suffix, e.g.,

zt (k) = zk, zw(k) = zk+ 1
2
(zw(0) = z1

2
= 0),

and model quantities using three suffixes, where necessary, e.g.,Tttt (≡Ttt ), uuut (≡uuu),

wt tw,wuuw, (KM)uuw, etc. Note that, whilek increases downward, differences are taken in
the upward direction; thus,

(δζq)k+ 1
2
= qk − qk+1.

Some ancillary issues related to grid operations are discussed in the appendices. Methods
of supplying grid information to the model and of interpolating data on input and output
are given in Appendix C, and conditions for continuity at various types of reentrant array
boundary are given in Appendix D.
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3.2. Velocity and the Continuity Equation

The horizontal velocity is reconstituted from two parts: a barotropic part, calculated from
the stream function, and a baroclinic part,u′, viz.,

uuu = −1

(h2H)uu
δηψt t

ξ + u′uu, vuu = 1

(h1H)uu
δξψt t

η + v′uu.

The depth at ‘u’ points (Huu) is taken as that of the shallowest of the four ‘t ’ points
surrounding it. These velocities are averaged to cell faces in the continuity and advection
equations; however, at velocity cell faces, theadvecting(but notadvected) velocity can be
calculated without averaging of the barotropic part using

uadv
tu =

−1

(h2H)tu
δηψt t ,+ u′uu

ξ
, vadv

ut =
1

(h1H)ut
δξψt t ,+ v′uu

η
,

whereHi, j+ 1
2
= max(Hi+ 1

2 , j+ 1
2
, Hi− 1

2 , j+ 1
2
), etc.

Vertical velocity is calculated from the continuity equation (Eq. 9). This is required for
both tracers and vectors, and must be computed at ‘t tw’ and ‘uuw’ points. The material
fluxes,Fu = h2u andFv = h1v, are intermediate quantities used in the continuity and
advection calculations.
For tracers:

∇ · u = 1

(h1h2)t t
{δξ (Fu)ut + δη(Fv)tu} + 1

(h3)t
δζwt tw = 0,

where(Fu)ut = (h2)uuuuu
η
, (Fv)tu = (h1)uuvuu

ξ
. The inclusion of the scale factors inside

the averages (rather than as(h2)ut and(h1)tu outside the averages) makes the advecting
velocity a weighted average; this needs to be done in order to ensure conservation of
mechanical energy when work is done by pressure gradient forces, as shown for spherical
coordinates by Pacanowski ([43], Sections 8.5 and 9.3) and for curvilinear coordinates in
Appendix E. The vertical velocity is given by

wi, j,k+ 1
2
= wi, j,k− 1

2
+ (h3)k(∇H · u)i, j,k,

wi, j, 1
2
= wi, j,kbot+ 1

2
= 0.

For velocities:

∇ · u = 1

(h1h2)uu
{δξ (Fu)tu + δη(Fv)ut} + 1

(h3)t
δζwuuw = 0.

where(Fu)tu = (h2)tuuadv
tu , (Fv)ut = (h1)utv

adv
ut . The vertical velocity is given by

wi+ 1
2 , j+ 1

2 ,k+ 1
2
= wi+ 1

2 , j+ 1
2 ,k− 1

2
+ (h3)k(∇H · u)i+ 1

2 , j+ 1
2 ,k
,

wi+ 1
2 , j+ 1

2 ,
1
2
= wi+ 1

2 , j+ 1
2 ,kbot+ 1

2
= 0.

3.3. Tendency Terms

(a) Advective Term for Tracers

−u ·∇T = − 1

(h1h2)t t

{
δξ
[
(Fu)utTtt

ξ ]+ δη[(Fv)tuTtt
η]}− 1

(h3)t
δζ
(
wt twTttt

ζ )
.
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(b) Diffusive Term for Tracers

Horizontal mixing

∇ · (K∇T) = 1

(h1h2)t t

{
δξ

[(
AH

h2

h1

)
ut

δξTtt

]
+ δη

[(
AH

h1

h2

)
tu

δηTtt

]}
+ 1

(h3)t
δζ

[
(KH )t tw

(h3)w
δζTttt

]
.

Isopycnal mixing. The Cox [13] discretisation of the diffusion term with isopycnal
mixing is

∇ · (K∇T) = 1

(h1h2)t t

{
δξ

[
(h2)ut

(
(AI +AH )utt

1

(h1)ut
δξTtt+(AI Sx)utt

1

(h3)t
δζTttt

ξζ

)]
+ δη

[
(h1)tu

(
(AI + AH )tut

1

(h2)tu
δηTtt + (AI Sy)tut

1

(h3)t
δζTttt

ηζ

)]}
+ 1

(h3)t
δζ

{
(AI Sx)t tw

1

(h1)t t
δξTttt

ξζ + (AI Sy)t tw
1

(h2)t t
δηTttt

ηζ

}
+ 1

(h3)t
δζ

{[
AI
(
S2

x + S2
y

)+ KH
]

t tw

1

(h3)w
δζTttt

}
. (30)

The term on the last line is theK33 component, which may need to be calculated implicitly,
for reasons given below.

Cox [13] has shown that the numerical stability requirement,Kmn ≤ hmhn/4(δtts)k,
places constraints on the maximum permissible isopycnal slope,

S≤
√

K33

AI
= (h3)k

2
√

AI (δtts)k
,

S≤ K13

AI
∼ K23

AI
∼ K31

AI
∼ K32

AI
∼ hH(h3)k

4AI (δtts)k
,

wherehH is a characteristic horizontal grid length,(h3)k is the thickness of the levelk
where the slope is calculated, and(δtts)k is the (accelerated) tracer time step for levelk.
The first constraint is the more severe but may be avoided by treating the whole of theK33

term implicitly. When constant isopycnal diffusivity is used, the second constraint normally
limits the slopes used in the off-diagonal terms to about 1/200 near the surface and 1/20
in the deep ocean. The slopes (ρx/ρ̂z) and (ρy/ρ̂z) are effectively limited by a minimum
condition placed on the magnitude of a modified vertical density gradient,

−ρ̂z = min[−ρz,

√
ρ2

x + ρ2
y/(max. slope)],

and are calculated as

(Sx) = −ρxρ̂z/
(
ρ̂2

z + ε
)
, (Sy) = −ρyρ̂z/

(
ρ̂2

z + ε
)
, (31)

whereε is a small number to prevent overflows. As slopes are required at ‘utt,’ ‘ tut,’ and
‘ t tw’ points, and all three density gradients are required for each slope calculation, nine
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gradients are required; these are computed in a manner analogous to that used in the GFDL
model, as follows:

(ρx)utt = 1

(h1)ut
δξρt t t , (ρy)utt = 1

(h2)ut
δηρt t t

ξη, (ρz)utt = 1

(h3)t
δζ ρt t t

ξζ ,

(ρx)tut = 1

(h1)tu
δξρt t t

ηξ , (ρy)tut = 1

(h2)tu
δηρt t t , (ρz)tut = 1

(h3)t
δζ ρt t t

ηζ ,

(ρx)t tw = 1

(h1)t t
δξρt t t

ζ ξ , (ρy)t tw = 1

(h2)t t
δηρt t t

ζη, (ρz)t tw = 1

(h3)w
δζ ρt t t .

As slope limiting has the effect of creating spurious horizontal (and hence diapycnal)
diffusion, an alternative way of applying the constraint is to limitAI where slopes are steep,
as has been done by Gerdeset al. [22] and Danabasoglu and McWilliams [14].

The Cox scheme is normally stabilised with a background component of horizontally
oriented diffusion. The ‘background’ diffusivity is commonly set to a value of about half that
of the isopycnal diffusivity, which greatly detracts from its modelling advantages. Griffies
et al.[25] have shown that the Cox scheme is inherently unstable because it does not prevent
upgradient diffusive fluxes along isopycnals and because fluxes of the active tracers are not
balanced so as to ensure zero fluxes of potential density. They have proposed an alternative
numerical formulation which overcomes these problems and have implemented it in Version
3 of the modular ocean model. Because of the complexity of the coding, the present authors
have not adapted the Griffieset al. formulation to curvilinear coordinates at this stage.

Eddy-induced transport.When eddy-induced transport is parameterised by the Gent–
McWilliams scheme, the effective ‘material’ fluxes used for calculating continuity and
advection of tracers are determined from the total transport velocity, which is the sum of
the large scale velocity,u, and the eddy-induced transport velocity,u∗, i.e.,

(Fu)ut = (h2)uuuuu
η + (h2)utu

∗
ut,

(32)
(Fv)tu = (h1)uuvuu

ξ + (h1)tuv
∗
tu.

The eddy-induced velocities are calculated from

u∗ut = −δζ (AE Sx)utw/(h3)t ,

v∗tu = −δζ (AE Sy)tuw/(h3)t .

The slopes are computed from appropriately centred density gradients using Eq. (31), but
they are not necessarily limited in the same way as in the isopycnal mixing term. The
x- andy-directed density gradients are averaged from those used in the isopycnal mixing
calculation,

(ρx)utw = (ρx)utt
ζ
, (ρy)utw = (ρy)utt

ζ
, (ρz)utw = (ρz)t tw

ξ
,

(ρx)tuw = (ρx)tut
ζ
, (ρy)tuw = (ρy)tut

ζ
, (ρz)tuw = (ρz)t tw

η
.

Boundary conditions are satisfied by setting(AE Sx)utw and(AE Sy)tuw to zero at surface
and land boundaries of ‘t ’ grid cells.
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Eddy-induced transport can also be parameterised as a skew diffusive flux, as proposed
by Griffies [24]. While recommending its implementation in conjunction with the Griffies
et al. [25] isopycnal diffusion scheme, he also noted that it could profitably be used with
Cox’s [13] numerics. Following Eq. (15), this can easily be done by substituting (AI − AE)
for AI in the K13 andK23 diffusivity tensor components and (AI + AE) for AI in the K31

andK32 components in Eq. (30).

(c) Hydrostatic Pressure Gradient Term

− 1

ρ
∇H p̃ = − 1

ρ0

[
1

(h1)uu
δξ p̃tt t

η
,

1

(h2)uu
δη p̃tt t

ξ
, 0

]
Here, p̃tt t = p̃i, j,k is the hydrostatic pressure, calculated from

p̃i, j,1 = g[ρi, j,1(h3)1]/2,

p̃i, j,k = g[ρi, j,k−1(h3)k−1+ ρi, j,k(h3)k]/2+ p̃i, j,k−1,

whereρ is the in situ density (for accuracy, referenced in practice to an arbitrary level-
dependent value, which has no effect on the horizontal gradients).

(d) Advective Term for Momentum

−(u ·∇u)1 = − 1

(h1h2)uu

{
δξ
[
(Fu)tu uuu

ξ
]+ δη[(Fv)ut uuu

η
]}

− (L1uuu− L2vuu)vuu− 1

(h3)t
δζ
[
wuuwuuu

ζ
]
, (33)

−(u ·∇u)2 = − 1

(h1h2)uu

{
δξ
[
(Fu)tuvuu

ξ
]+ δη[(Fv)utvuu

η
]}

+ (L1uuu− L2vuu)uuu− 1

(h3)t
δζ
[
wuuwvuu

ζ
]
. (34)

Fu andFv are as given in Section 3.2, and the multipliers in the metric terms are

L1 = 1

(h1h2)uu
δη(h1)ut, L2 = 1

(h1h2)uu
δξ (h2)tu.

(e) Friction Term

Fm = (FH)m + 1

(h3)t
δζ

[
(KM)uuw

(h3)w
δζ (um)uut

]
, m= 1, 2.

The horizontal part may be represented in terms of strain rates,

(FH)1 = 1(
h1h2

2

)
uu

δξ
(
h2

2AM DT
)

tu
+ 1(

h2
1h2
)

uu

δη
(
h2

1AM DS
)

ut
,

(FH)2 = 1(
h1h2

2

)
uu

δξ
(
h2

2AM DS
)

tu
− 1(

h2
1h2
)

uu

δη
(
h2

1AM DT
)

ut
,
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where

(DT )tu =
(

h2

h1

)
tu

δξ

(
u

h2

)
uu

−
(

h1

h2

)
tu

δη

[
vuu

ξη

(h1)t t

]
,

(DS)tu =
(

h2

h1

)
tu

δξ

(
v

h2

)
uu

+
(

h1

h2

)
tu

δη

[
uuu

ξη

(h1)t t

]
,

(DT )ut =
(

h2

h1

)
ut

δξ

[
uuu

ξη

(h2)t t

]
−
(

h1

h2

)
ut

δη

(
v

h1

)
uu

,

(DS)ut =
(

h2

h1

)
ut

δξ

[
vuu

ξη

(h2)t t

]
+
(

h1

h2

)
ut

δη

(
u

h1

)
uu

.

In the Smagorinsky scheme, the total deformation rates, and hence the viscosities, are
also evaluated at ‘ut’ and ‘tu’ points, using the equations given in Section 2.8(d). Tracer
diffusivities may be calculated in a similar fashion, except that the order in which the
subscripts ‘ut’ and ‘tu’ appear in the equations will be reversed.

Alternatively, the momentum diffusion form may be used,

(FH)1 = 1

(h1h2)uu

{
δξ

[(
AM

h2

h1

)
tu

δξ (uuu)

]
+ δη

[(
AM

h1

h2

)
ut

δη(uuu)

]}
+(M1/2) δ2ξ vuu− (M2/2) δ2ηvuu+ N1uuu+ N2vuu,

(35)

(FH)2 = 1

(h1h2)uu

{
δξ

[(
AM

h2

h1

)
tu

δξ (vuu)

]
+ δη

[(
AM

h1

h2

)
ut

δη(vuu)

]}
−(M1/2) δ2ξuuu+ (M2/2) δ2ηuuu+ N1vuu− N2uuu,

where

M1 = 1

(h1h2)uu

[(
2AM

h1

)
uu

δη(h1)ut + δη(AM)ut

]
,

M2 = 1

(h1h2)uu

[(
2AM

h2

)
uu

δξ (h2)tu + δξ (AM)tu

]
,

N1 = 1

(h1h2)uu

{
− 1

(h2)uu
δξ

[(
AM

h2

h1

)
tu

δξ (h2)uu

]
− 1

(h1)uu
δη

[(
AM

h1

h2

)
ut

δη(h1)uu

]}
,

N2 = 1

(h1h2)uu

{
+ 1

(h2)uu
δξ

[(
AM

h2

h1

)
tu

δη(h1)t t

]
− 1

(h1)uu
δη

[(
AM

h1

h2

)
ut

δξ (h2)t t

]}
.

These coefficients correspond to the continuous forms given in Section 2.8(e); however,
M1 and M2 are divided by 2 in Eq. (35) because the velocity differences are taken over
a double interval. When variable viscosities are used with these equations,AM must be
evaluated atut, tu, anduu points and, if specified as a field at sayuu points, it will need to
be appropriately averaged, e.g.,(AM)ut = (AM)uu

η
andδη(AM)ut = 1

2δ2η(AM)uu.

3.4. Stream Function Calculation

The depth averaged vorticity forcing is calculated att t points using Eq. (26),

(Gz)t t = 1

(h1h2)t t

{
δξ
[
(h2)uu(Gv)uu

η]− δη[(h1)uu(Gu)uu
ξ ]}

.
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This is to be equated with an elliptical expression of the stream function tendency,ψ t .
Following the method used in the GFDL model, this function is computed from the stream
function tendencies of a five-point Laplacian star, using a matrix of coefficients,CE,CW,CN ,
CS, andCC, referring to the points ‘east,’ ‘west,’ ‘north,’ and ‘south’ of, and ‘centred upon’
the point at which the differential expression is to be evaluated. The elliptical expression
given in Eq. (28) may be written

k ·∇× δ2t ū
2δtuv

= 1

(h1h2)t t

{
δξ

[(
1

H

h2

h1

)
ut

δξψ
t
t t

]
+ δη

[(
1

H

h1

h2

)
tu

δηψ
t
t t

]}

= 1

(h1h2)i, j

[(
1

H

h2

h1

)
i+ 1

2 , j

(
ψ t

i+1, j −ψ t
i, j

)− ( 1

H

h2

h1

)
i− 1

2 , j

(
ψ t

i, j − ψ t
i−1, j

)
+
(

1

H

h1

h2

)
i, j+ 1

2

(
ψ t

i, j+1− ψ t
i, j

)− ( 1

H

h1

h2

)
i, j− 1

2

(
ψ t

i, j − ψ t
i, j−1

)]
= CEψ

t
i+1, j + CWψ

t
i−1, j + CNψ

t
i, j+1+ CSψ

t
i, j−1+ CCψ

t
i, j ,

where

CE = 1

(h1h2)i, j

(
1

H

h2

h1

)
i+ 1

2 , j

, CW = 1

(h1h2)i, j

(
1

H

h2

h1

)
i− 1

2 , j

,

CN = 1

(h1h2)i, j

(
1

H

h1

h2

)
i, j+ 1

2

, CS = 1

(h1h2)i, j

(
1

H

h1

h2

)
i, j− 1

2

,

CC = −(CE + CW + CN + CS),

and Hi+1/2, j = (Hi+1/2, j+1/2+ Hi+1/2, j−1/2)/2, etc., as in the GFDL model. For evaluat-
ing residuals, the coefficients at the central points are equally weighted; this is done by
multiplying each of the coefficients in the star by the factor 1/CC.

In the semiimplicit treatment of the Coriolis term, the above expression is combined with

k ·∇× (α f k × δ2t ū) = −α(2δtuv)

(h1h2)t t

[
δξ

(
f

H

)
uu

· δηψ t
t t

η

− δη
(

f

H

)
uu

· δξψ t
t t

ξ
]

= − α(2δtuv)

2(h1h2)i, j

{[(
f

H

)
i+ 1

2 , j+ 1
2

−
(

f

H

)
i− 1

2 , j+ 1
2

]
· (ψ t

i, j+1−ψ t
i, j

)
+
[(

f

H

)
i+ 1

2 , j− 1
2

−
(

f

H

)
i− 1

2 , j− 1
2

]
· (ψ t

i, j − ψ t
i, j−1

)
−
[(

f

H

)
i+ 1

2 , j+ 1
2

−
(

f

H

)
i+ 1

2 , j− 1
2

]
· (ψ t

i+1, j − ψ t
i, j

)
−
[(

f

H

)
i− 1

2 , j+ 1
2

−
(

f

H

)
i− 1

2 , j− 1
2

]
· (ψ t

i, j − ψ t
i−1, j

)}
= C′Nψ

t
i, j+1+ C′Sψ

t
i, j−1+ C′Eψ

t
i+1, j + C′Wψ

t
i−1, j
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(from Eq. 29) by allowing the coefficients

C′E =
α(2δt)uv

2(h1h2)i, j

[(
f

H

)
i+ 1

2 , j+ 1
2

−
(

f

H

)
i+ 1

2 , j− 1
2

]
,

C′W = −
α(2δt)uv

2(h1h2)i, j

[(
f

H

)
i− 1

2 , j+ 1
2

−
(

f

H

)
i− 1

2 , j− 1
2

]
,

C′N = −
α(2δt)uv

2(h1h2)i, j

[(
f

H

)
i+ 1

2 , j+ 1
2

−
(

f

H

)
i− 1

2 , j+ 1
2

]
,

C′S =
α(2δt)uv

2(h1h2)i, j

[(
f

H

)
i+ 1

2 , j− 1
2

−
(

f

H

)
i− 1

2 , j− 1
2

]

to augment the corresponding unprimed coefficients derived earlier. Note that the central
coefficient,C′C = −(C′E + C′W + C′N + C′S), is easily seen to be zero.

The stream function tendency is obtained by extrapolating its field from the previous two
time steps as a first guess and solving the elliptic equation,

L
(
ψ t

i, j

)− (Gz)i, j = 0.

4. COMPARISON OF ARCTIC SIMULATIONS

4.1. Models and Grids

Several simulations of the North Atlantic and Arctic Oceans were performed to compare
aspects of the solutions in the northern high latitude regions produced by spherical and
curvilinear coordinate models using a number of different horizontal grids. The spherical
model is, with some additions, the latitude–longitude MOM1 [45] and is essentially a special
case of the more general curvilinear model described in the preceeding sections.

Three grids were used, a 2.5◦ latitude× 4.0◦ longitudesphericalgrid and two curvilinear
grids generated by methods described by Murray [38]. All grids were constructed globally
and would normally be used in integrations employing the full global domain. However,
because the focus of interest in the experiments described here is the grid-related differences
in the representation of the Arctic Ocean, each grid was truncated at a grid row near 12.5◦S so
as to limit the model domain to just the Arctic and North Atlantic Oceans. The experiments
therefore specifically exclude any consideration of differences affecting the other ocean
basins or the Bering Strait throughflow. The high latitude parts of the grids used are shown
in Fig. 2. For the main experiments, spherical and curvilinear grids were used with the
respective models; however, for comparing their computational performance, both models
were run using the spherical grid and small time steps to avoid the need for filtering, which
is not available in the curvilinear model.

There are essentially two curvilinear configurations which give useful grid alignments in
the Arctic region without causing too much distortion (and cell size variation) over the rest of
the globe. The first has the northern grid pole displaced from the Arctic Ocean into one of the
subpolar continents. This type is represented by abipolar grid constructed by reprojecting
the 2.5◦ × 4.0◦ spherical mesh so as to place the northern pole over Canada at 90◦W, 60◦N
and the southern pole at 90◦E, 85◦S (Fig. 2b). Some latitudinal compression was applied
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FIG. 2. Grids used for the North Atlantic simulations: (a) spherical grid (with North Pole at-point),
(b) bipolar grid, and (c) embedded grid. The cells of the full global grid array are shown in each case; how-
ever, only the truncated arrays were used in the integrations. In the curvilinear cases, (b) and (c), the limits
of the truncated grids are indicated by heavy bold curves and the grid poles by black dots. Solid contours represent
the boundaries of oceant grid cells and dashed contours land cells. Note that the embedded grid is the same as
the latitude–longitude grid south of 54◦N.



CURVILINEAR BRYAN–COX–SEMTNER OCEAN MODEL 27

FIG. 2—Continued

near the northern pole in order to provide sufficient grid rows across the Greenland Sea.
The grid was not designed to align contours with the equator, although this has been done,
albeit with somewhat more distortion in the northern hemisphere, in the grids of Madec and
Imbard [34] and Smithet al. [57].

In the second configuration, the single northern pole is replaced by two singularities sym-
metrically located over Canada and Siberia. The contours of such a grid can be constructed
either from families of confocal conic sections on a north polar stereographic projection
or by rotating and reprojecting one hemisphere of a spherical grid into the polar cap of
a latitude–longitude grid. The latter method was used, giving anembeddedgrid in which
the rotated hemisphere has poles at−30◦ ± 90◦E, 66◦N and is joined smoothly over the
latitude range 60◦–70.8◦N to a 2.5◦ × 4.0◦ latitude–longitude grid covering the rest of the
globe (Fig. 2c). This grid is essentially a transformation of the ‘equatorial transform’ grid
of Eby and Holloway [17], but it has a smoothed transition at the join and the potential for a
connection to the Pacific via the Bering Strait. Reprojection of the rotated hemisphere of the
embedded grid into the region north of 66◦N results in a natural decrease of grid meridional
spacing toward the centre of the embedded region; this has the advantage of preventing
large aspect ratios, which would have been produced had the meridional coordinate been
rescaled to give a constant grid spacing along the rotated grid equator.

Other aspects of the two models were made as similar as possible for all horizontal grids.
Twenty-one vertical levels were used, with thicknesses increasing from 25 to 450 m at
depth. After interpolation, level masks were adjusted so that channels and ridges should
be resolved in the same way on all grids. Denmark Strait, Faroe Bank Channel, and Fram
Strait were made at least two tracer points wide at all levels above their sill depths (620,
800, and 2350 m), and the Lomonosov Ridge was given a depth of 1900 m. Each model
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was forced with annual average Hellermann and Rosenstein [29] wind stresses, and tracers
were restored using a 30-day time constant to 10 m Levitus [33] winter fields, enhanced in
the Greenland and Labrador Seas to correct inadequacies in the data. A 50-day relaxation to
climatology was applied at subsurface points along the southern boundary; however, this had
little influence in the polar region. Horizontal and vertical viscosities were made constant
at 3.5× 109 and 20 cm2 s−1, and horizontal friction was computed using the momentum
diffusion discretisation (which, in spherical coordinates, is just the form normally used with
constant viscosities in the GFDL model). Isopycnal diffusion and eddy-induced transport,
implemented as a skew diffusion [24], were applied to tracers using Cox–Redi numerics,
with isopycnal and thickness diffusivitiesAI = AE = 1× 107 cm2 s−1, and no background
horizontal diffusivity was used. Vertical diffusivities were based on the profile of Kraus [32]
and varied between 0.2 cm2 s−1 near the surface and 1.4 cm2 s−1 at 4150 m; the low surface
values were considered appropriate in the Arctic Ocean, which is highly stratified in the
upper layers.

Latitude–longitude integrations necessarily differ from curvilinear integrations in one
important respect, the need for special modifications to overcome computational problems
in the vicinity of the North Pole. This, of course, was one of the main motivations for
implementing a curvilinear coordinate scheme. Nevertheless, to allow a fair comparison, we
thought it important to choose a latitude–longitude formulation affected as little as possible
by numerical artifacts. The problem of computing exchanges at the North Pole was solved
by including a special prognostic calculation for a composite polar-tracer cell; this avoids
the distortion caused by inserting an artificial island at the pole. The problem of small zonal
grid spacing is normally solved by applying Fourier filtering. This circumvents the time step
constraints, but the process of filtering does tend to degrade the solution somewhat. The best
simulation, or at any rate the one most closely comparable to the curvilinear simulations, is
achieved by running the model without filtering, but at the expense of an enormous increase
in the number of iterations. For most studies, such an expense could not be contemplated;
however, for the purposes of this demonstration, it would be possible to run an asynchronous
‘equilibrium’ integration without filtering. Because the time step implications are so great,
we decided to run the latitude–longitude model both with and without filtering to help
distinguish the effects of filtering from those of using different grids.

In the filtered experiment, Fourier filtering was applied north of a reference latitude
of 80◦N. The usual practice is to truncate Fourier components having a wavelength less
than two grid intervals at the reference latitude; however, in this experiment, the truncation
formula was modified so that the number of waves retained was given by

m≤ (ni /π) sin−1(cosφ/ cosφref),

whereni is the zonal periodicity andφref is the filtering reference latitude. This has been
recommended by Murray and Reason [40] on the grounds that it should maintain a cons-
tant time step limit for all rows in the filtering region, which is more efficient than using
the standard truncation, which does not; it thereby obviates the need for tapering mixing
coefficients downward near the pole, an expedient which introduces some artifacts of its
own.

Each experiment was integrated for 80,000 days (220 years), with acceleration factors
increasing this period by up to factors of eight at depth. In the curvilinear and filtered
latitude–longitude integrations, both of which had an effective minimum grid length of a
little less than 1◦, the momentum time step was made 20 min and the tracer time step 2 days,
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requiring 40,000 iterations. In the unfiltered latitude–longitude integration, the time steps
had to be restricted to 1 min and 3 h, respectively, requiring 640,000 iterations.

4.2. Results

Figs. 3a–3c show the 139 m velocities for the spherical, bipolar, and embedded grid
simulations. All plots show the same major currents, which in most cases correspond to those

FIG. 3. Velocities at 139 m from simulations performed on the (a) spherical, (b) bipolar, and (c) embedded
grids (450-day streamlines); also, (d) velocities at 545 m for the embedded grid simulation (900-day streamlines).
The scale vectors are correct near the centre of the projection.
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observed (see, e.g., [16, 46]). The main currents in the Arctic basin are the Beaufort Gyre
and the Transpolar Drift Stream, which diverges from it and feeds into the East Greenland
Current (EGC) and subsequently the Subpolar Gyre. The Beaufort Gyre occupies more of the
Arctic than ice drift observations would suggest, and the Transpolar Drift Stream has been
contorted into a double bend (cf., [10]). The North Atlantic Current enters the region from the
south and branches into the Irminger Current, which merges with the Subpolar Gyre south of
Iceland, and the Norwegian Current, which further divides, with a branch flowing east into
the Barents Sea. The remainder of the Norwegian Current subsides and either merges with
the EGC or undercuts it in the northward flowing West Spitsbergen Current (WSC). These
subsurface currents are seen in the 545 m velocities, which are shown for just the embedded
grid case in Fig. 3d; they are also present in the other simulations. The subducted Atlantic
water is seen to spread out into the Arctic basin in a broad eastward-flowing counter-current.
Evidence that this movement occurs in reality is provided by the presence of a warm tongue
extending along the Siberian side of the ocean in the field of temperature at the depth of the
temperature maximum [59]. The southward-flowing modelled current was intense in the
Denmark Strait at the 545 m level, which is just above the sill, but diminished horizontally
as the water overflowed into the depths of the Irminger Basin; the streamlines appear thus
because they are integrated from the horizontal fields. At deeper levels (not shown); the flow
in the Greenland and Norwegian Seas was predominantly southward toward and across the
Faroe–Scotland Ridge.

The currents were rather weak in Fram Strait and relatively too strong in the Barents
Sea. In these simulations, the EGC carried 1.4–1.6 Sv (1 Sv≡ 106 m3 s−1) and the WSC
0.6–0.7 Sv, as compared to 3–5 Sv for each in the observations [59] and 4 Sv in horizontal
mixing simulations, which we also performed. In the Barents Sea, the eastward transport
of 0.8–1.0 Sv was of the right order, but the flow was too broad to correspond to the coast-
following Murman Current and there was no feature corresponding to the west-flowing
Percey Current on the Spitsbergen side. (By contrast, the horizontal mixing simulations
did show a weak but cyclonic circulation.) The above defects are not wholly attributable to
the use of eddy-induced transport. The currents flowing through Fram Strait are especially
complex and are separated both vertically and horizontally, with currents at all levels flowing
northward on the east side of the strait and southward on the west side [58]; this complexity
is further compounded by the observation that the WSC divides into several branches, one
of which recirculates into the EGC within the strait [48]. Because of the lateral viscosity
and diffusivity necessary for computational stability, most numerical models cannot resolve
currents which are closely separated in the horizontal, much less represent any recirculation
within the strait; below about 500 m, Fram Strait is represented by only a single line of
velocity points anyway. The consequences of this were that in the simulations (1) the WSC,
which Aagaardet al.[2] found to contain two cores of>3.5◦C water between 50 and 200 m
and within 200 km of Spitsbergen, was forced to flow wholly beneath the EGC and at depths
exceeding 250 m, and (2) all southward transport was above this depth, thus precluding the
saline outflow of deep Arctic Ocean water which Aagaardet al.[1] found over the Greenland
continental slope and which they argued might be important for preconditioning convection
in the Greenland Sea. Experiments with reduced lateral mixing coefficients (AM = 1.2×
109 cm2 s−1, and AI = AE = 0.5× 107 cm2 s−1 in the Arctic region) produced no change
in this behaviour but did generate cyclonic gyres in the Siberian marginal seas and a closed
cyclonic counter-gyre in the deeper levels of the Arctic Ocean.

Some vertical velocity fields are shown in Fig. 4. The important features implied by
the horizontal velocity patterns are most clearly seen in those taken from the curvilinear
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simulations. Fig. 4a is for the embedded grid experiment; the bipolar grid vertical velocities
were similar. Downwelling was general in the Greenland Sea and affected both the East
Greenland and Norwegian Currents. Subsidence also occurred where saline Atlantic water,
cooled on passing through the Barents Sea, flowed off the Siberian Shelf. Throughout most
of the Arctic there was weak upwelling, intensified somewhat around the boundaries. In the
filtered latitude–longitude simulation, these features were almost completely disrupted by
the noisy stellate pattern caused by Fourier filtering [40]. In the unfiltered simulation, this
unwelcome behaviour was much reduced, but it is important to note that it persisted in the
area between the pole and Fram Strait.

High densities in the Greenland Sea were encouraged by the cold saline surface restora-
tion and hence positive surface density flux in that region (Fig. 5). In the Arctic the sur-
face restoration was cold but fresh (reflecting the effect of the northern rivers and Bering
throughflow) and, on balance, productive of low densities and stable stratification. The den-
sity patterns at 139 m differed little between grids and resembled one another better than
the Levitus fields. Both model and Levitus fields show quantitatively similar patterns of
high density in the centre of the Greenland Gyre and the Barents Sea, a density contrast in
the southern Norwegian Sea, southward advection of lighter water in the EGC, and a pool
of minimum densities in the Beaufort Sea. The isopycnals tended to follow the doubtful
S-bend in the Transpolar Drift Stream in the model simulations, and densities were rather
lower than observed in the eastern Arctic, probably as a result of the weak inflow of saline
water through Fram Strait in the model. On the other hand, the rather suspicious radial
structures about the pole in the Levitus data (somewhat smoothed out by interpolation to
the curvilinear grid in Fig. 5c) appear to be the consequence of extrapolating from sparse
data on a latitude–longitude grid in their analysis.

It may be that the velocity fields shown in Figs. 3a–3c look rather different from one
another even though they show the same general features. If so, this has much to do with
the different grid arrangements; the plots look much more similar when interpolated to the
same grid. This certainly applies to the comparison of the embedded and spherical simula-
tions. The differences between these are shown in Fig. 6a. Velocity differences were largest
along the Greenland and Norwegian coasts and near the Siberian shelves; in these areas,
they were mainly due to the local effects of topography on the interpolation or the some-
what more extended effects of differing channel geometry. Differences were very small in
the central Arctic Ocean, where there is no shallow topography, and south of 60◦, where
the two grids become the same. The density differences at this level were greatest in the
same areas as the velocity differences, and were mostly less than 0.2 sigma units. Consid-
ered beside this, the differences between the filtered and unfiltered simulations (Fig. 6b)
were small and diminished quickly beyond the first few grid rows around the pole. Hence,
the impact that filtering would have had on theseparticular spherical–curvilinear compar-
isons is fairly small; however, this would not necessarily apply in other types of model
experiment.

The velocities in the bipolar simulation showed minor qualitative differences from those
performed on the other two grids. The Subpolar Gyre was better defined and extended further
into the Labrador Sea, as it does in reality. This was permitted by the greater north–south
or grid zonal resolution of this grid near Canada. However, even with the mild compression
applied at higher grid latitudes, the east–west resolution of this grid is correspondingly
coarser, which resulted in poor resolution of currents in the Greenland Sea and required
Fram Strait to be made very wide at depth in order to accommodate just a single row
of velocity points. Because transports are mainly determined by other factors, the current
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FIG. 4. Vertical velocities at 470 m for (a) embedded grid and (b) filtered and (c) unfiltered spherical grid
models (contour interval 1× 10−4 cm s−1, with contours also at±0.25, 0.5× 10−4 cm s−1).
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FIG. 4—Continued

velocities were lower than in the other simulations. Other current features which differed
in this simulation were a considerable flow counterclockwise around the north of Iceland,
which is not suggested by observations, and a slightly stronger flow through the Barents Sea.

The effects of the north–south exchanges can be seen in the potential temperature sections
taken from the Norwegian Sea and across the pole in the Arctic along the meridian 2◦E–
178◦W (Fig. 7). Both model and Levitus sections show a strong thermal stratification in
the upper layers and an Atlantic layer temperature maximum at about 500 m in the Arctic
(i.e., north of 80◦). The maintenance of these features was aided by the actions of eddy-
induced transport and low vertical diffusivities in the model; horizontal mixing simulations
(not shown) represented them poorly. The local maximum indicated by the sloping closed
contour near 78◦N in some of the model sections is due to the westward movement of Atlantic
water across them in the northern part of the Greenland Sea gyre and its subsidence in the
WSC. This feature was not located so far north as in the observations, and this reflects the
inadequate representation of the WSC. The form of the closed contour was best represented
by the spherical model, possibly because of its greater zonal resolution, which allowed at
least some slantwise separation of the north- and south-flowing current cores. Modelled
temperatures in the Arctic Ocean proper were 0.6–0.8◦C too high in both the Atlantic layer
and at deeper levels. It is likely that the surface restoration was not providing a source of
shelf water sufficiently cold and dense to penetrate the Atlantic layer and form Eurasian
Basin bottom water in the manner hypothesized by Aagaardet al.[3]. The absence of such a
water mass with the right properties would account for the absence of a modelled southward
bottom current corresponding to the deep outflows through Fram Strait inferred by Smethie
et al. [56] and Aagaardet al. [3].
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FIG. 5. Potential densities at 139 m from (a) the embedded grid model, (b) the unfiltered spherical grid model,
and (c) the Levitus data (contour interval 0.1 sigma units).

5. CONCLUSION

In Sections 2 and 3, the spherical Bryan–Cox–Semtner model was generalised to
accommodate orthogonal curvilinear coordinates. We emphasize the term ‘generalised.’
No changes were made to the dynamics, time stepping, or spatial finite differencing meth-
ods. The spherical model can thus be considered a special application of the curvilinear
model. In practical terms, however, certain simplifications and differences in the centring
of metric coefficients which are possible in the spherical model result in slight differences
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FIG. 6. Velocity and potential density differences for (a) embedded minus unfiltered spherical model
(450-day streamlines, contour interval 0.05 sigma units) and (b) filtered minus unfiltered spherical model (1800-day
streamlines, contour interval 0.01 sigma units). Note the difference in scales.

between spherical and curvilinear model solutions when both are run on the same latitude–
longitude grid. Also, differences in the order of operations and the way that storage is
handled have a small impact on execution time, depending on the computer code, plat-
form, and optimisations. The curvilinear model requires some extra calculations, but their
cost is largely offset by the precalculation of many combinations of metric factors as
two-dimensional arrays in our model. In unfiltered tests carried out on an NEC SX4 computer
with code adapted from MOM1, the curvilinear model took up to 31

2% longer with some
options.

An important reason for adopting a curvilinear coordinate framework in global models
is that it allows one to circumvent numerical problems associated with the presence of the
North Pole in the Arctic Ocean; in particular, the effects of small grid spacing on compu-
tational time steps. Fourier filtering is the method normally chosen to deal with this, and is
used in spite of its negative effects because of the very considerable alleviation of time step
constraints (by a factor of 1:16 in these experiments) that it provides, which far outweighs
the extra computational time needed for carrying out the filtering calculations. However,
in comparison with a curvilinear model, which does not require filtering anyway, a filtered
spherical model confers no computational advantage, only the disadvantage of performing
these extra calculations. Murray and Reason [40] showed that these could increase execution
time per time step by 17% in a global model in some formulations. Compared to this figure,
the small differences in computing time due to coding differences between the spherical and
curvilinear models referred to above are insignificant. Furthermore, a curvilinear grid can
often be designed to cover the world ocean or a particular part of it with a smaller number
of grid points if a boundary can be made to encircle a large land mass.

To separate solution differences due to filtering from those specifically due to the use of
a latitude–longitude grid, we decided to run both filtered and unfiltered simulations. The
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FIG. 7. Potential temperatures along the meridian 2◦E–178◦W from (a) Levitus and the (b) spherical,
(c) bipolar, and (d) embedded grid models (contour interval 0.2◦C, dashed contours for subzero temperatures).
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FIG. 7—Continued

effects of filtering are more thoroughly dealt with by Murray and Reason [40], mostly using
a horizontal mixing formulation; however, a couple of examples are given here from eddy-
induced transport experiments (Fig. 4b and Fig. 6b). In these simulations, filtering has had
little noticeable effect on plots of the prognostic variables, but some spurious features show
in difference plots and in vertical velocity fields. The relative freedom from distortion in the
prognostic variables reflects the stabilising effects of using constant restorative forcings,
and may not apply to coupled or synoptically forced integrations.

The impact of using various types of curvilinear grid was assessed by comparison with
the unfiltered latitude–longitude simulation. As Eby and Holloway [17] recognised, it is
not realistic to require an exact correspondence of global simulations with realistic topog-
raphy because there will always be differences due to interpolation and topography when
different grids are used; this is just as true for different latitude–longitude grids—it is not
a characteristic of curvilinear grids per se. A reasonable requirement is that different grids
should represent the same qualitative features and that there should be a fairly close quanti-
tative agreement in locations remote from topography. Murray and Reason [41], comparing
simulations on global grids of varying resolution, found that differences between solutions
were very small in midocean provided that similar mixing coefficients were used, but that
differences could be large near topography and sometimes noticeable at some distance
from important channels, such as the Drake Passage, if differently resolved on different
grids. In this connection, the Arctic is challenging for any model comparison because of
the dominance of its topography and the complexity of the currents passing through it.

The simulations all showed the major current and water mass features known from ob-
servation; however, they did show some deficiencies, and where these were concerned,
the correspondence between the models was closer than between models and observa-
tions. In the Arctic, the Beaufort Gyre expanded too much into the eastern half of the
ocean, and the path of the Transpolar Drift Stream was unrealistically contorted. The
upper layers of the eastern Arctic Ocean were insufficiently warm, saline, and dense as
a result of the weak inflow through Fram Strait. Because of the absence of a source of
high salinity shelf water, the deep water was too warm and insufficiently dense to escape
into the Greenland Sea at the bottom levels of Fram Strait. It would be possible to rectify
this defect to some extent by employing an interior relaxation or a stronger, preferably
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seasonal, surface relaxation over the Siberian shelves or by coupling to an ice model.
The most salient deficiency of both latitude–longitude and curvilinear grid arrangements,
and the one underlying a number of the deficiencies catalogued above, was the inability
of the models to resolve horizontally separated north- and south-directed flows through
Fram Strait and, hence, adequately represent the differential advection that takes place
through it.

In discussing the realism of the simulations, it should be emphasized that the purpose
of the comparison was not to decide upon a suitable simulation for studying the physical
oceanography of the Arctic as such, a task more effectively accomplished using a fine
resolution ocean or ice–ocean model of just the Arctic; rather, it was to determine what sort
of grid arrangement would be most suited to modelling a global ocean in which exchanges
with the Arctic Ocean could be well represented while overcoming numerical problems
associated with its inclusion. Equilibrium simulations of the type used here provide a quick
but only partial answer to this question because the employment of constant restorative
forcings tends to suppress climatic feedbacks and remote effects, especially in the Arctic.
The full benefit of avoiding filtering and using a well chosen grid arrangement is only likely
to be seen when time-varying surface fluxes and coupling with ice and atmosphere are
employed; however, such an investigation is outside the scope of this work.

In this study, we have considered the characteristics of integrations carried out on a
latitude–longitude grid and on two curvilinear grids which represent two types of singularity
placement that work well for representing the Arctic on a global mesh. In addition to
removing the north grid pole from the ocean, these two grids have some attractive resolution
characteristics in the Arctic region, where they are much needed if Arctic processes are to
be adequately represented in a global model. The bipolar grid that we used has very good
north–south resolution but poor east–west resolution, even after some compression in the
grid meridional direction; this allowed a better representation of the West Greenland and
Labrador currents, but provided too little resolution in Fram Strait and other straits. Stronger
compression might have overcome this deficiency. The latitude–longitude grid actually gave
the best east–west resolution in Fram Strait. Both bipolar and spherical grids suffered from
large aspect ratios. The embedded grid seemed to have the best overall arrangement, with
fairly isotropic and rather better than global average resolution in the Arctic region; this
type of grid also has the advantage of being a latitude–longitude grid over most of the globe
and of therefore being amenable to latitudinal compression near the equator or elsewhere
if required. All simulations, however, represented the exchanges in Fram Strait similarly,
because all used topography in which the strait was artifically widened as necessary to
include at least a single line of velocity points. For modelling this particular strait, it is clear
that more than one line of velocity points would be desirable.

APPENDIX A

Curvilinear Forms of Differential Operators in Transverse Curvilinear Coordinates

The gradient of a scalarq and the vertical component of the curl of a vector,V, may be
written

∇q =
∑

m

êm

hm

∂q

∂ξm
, (A1)
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ê3 ·∇× V = (∇× V)3 = 1
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The best expansion of the divergence operator depends on the nature of its argument. For
transverse curvilinear coordinates, in which
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the divergence of a vectorV, of the product of a tensorA and the gradient of a scalarq, and
of a tensorA are given by
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APPENDIX B

Derivation of the Momentum Diffusion Form of the Friction Term

Expanding the expression for(FH)1 in Eq. (23),
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After grouping, cancelling, and rearranging terms, the expression may be written
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By a similar process, or by symmetry, theξ2 term may be shown to be
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Considering the coefficients, the above equations may be simplified to the forms given in
Eq. (24).

APPENDIX C

Grid Spacing and Orientation

Grid generation programs provide a file containing the longitudes and latitudes of points
on the four subgrids of the grid array. Topography, forcings, and initial conditions are
interpolated to these points in the same way as for a latitude–longitude model. Wind stresses,
in addition to interpolation, require rotation to components parallel to the grid axes, and
hence a knowledge of theirorientationat velocity points.

Calculation of derivatives in the model equations also requires a knowledge of grid
spacing. Although prognostic quantities and other quantities calculated from them are only
defined on particular subgrids, the metric coefficients are required on all four subgrids; and
it is more economic to precalculate and store them independently than to average them in
the model calculations. Here it is assumed that the metric factors are defined in a finite
difference sense in terms of distancesx andy measured alongξ - or η-directed coordinate
lines. For instance, the length of the northern boundary of the (i , j ) t-grid cell, which passes
through points (i − 1

2, j + 1
2), (i, j + 1

2), and (i + 1
2, j + 1

2) (see Fig. 1), would be

(h1)i, j+ 1
2
= (δξ x)i, j+ 1

2
= xi+ 1

2 , j+ 1
2
− xi− 1

2 , j+ 1
2
.

It is not always convenient or possible to calculate grid spacings and orientations
analytically; however, because these properties are normally designed to vary smoothly
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across the grid, they can be fairly accurately approximated by those of the small circle arc
which fits three adjacent (half-integral) points along anx or y coordinate line, as in the
example given above.

For many purposes, it is necessary to reinterpolate model output to a latitude–longitude
grid. This is not so straightforward as interpolating to the curvilinear grid because the curvi-
linear coordinates of latitude–longitude points are not known and an analytical inversion of
the grid-generation algorithm is not always available. The method that we have used is to
search for the nearest curvilinear point to each required latitude–longitude point and then
determine the fractional position of the latter in curvilinear grid units, i.e.,ξ andη. This
calculation is another that requires a knowledge of grid orientations and spacings, and from
it is constructed an inverse grid file, which can be efficiently used any number of times for
interpolating from a particular curvilinear grid to a particular latitude–longitude grid (or
conceivably another curvilinear grid).

APPENDIX D

Reentrant Boundary Conditions

Global models normally have a simple periodic boundary condition,

qi, j = qi±ni , j ,

whereni is the periodicity of the grid in the east–west direction. This is applied by including
a repeated longitude column at the east and west boundaries. The northern and southern
boundaries are normally closed by land in latitude–longitude models, usually by Antarctica
in the south and by a polar island or reclaimed Arctic land mass in the north; however,
artificial reentrant northern (or southern) boundary conditions are possible, such as cyclic
north–south periodicity or reflection symmetry at some northern latitude (the ‘symmetry’
option in the GFDL model). A point inversion symmetry is the natural boundary condi-
tion for continuity across the pole, but in practice, continuity is achieved using a special
computation for a composite polar cell, as mentioned in the Introduction.

In curvilinear models, singularities are normally placed over continents so that the need to
give special consideration to the pole is avoided. Bipolar curvilinear grids have just an ‘east–
west’ periodicity, but grids with more than two singularities may require more complicated
reentrant conditions. The conic section and embedded rotated grids of Murray [38] have
three singularities and may be mapped onto a single rectangular array with three reentrant
boundaries: the periodic east and west boundaries, and a northern boundary defined by an
arc which joins the two northern singularities and across which the grid meridians pass.
From the indices given in Fig. 8 the continuity condition may be expressed as

qi, j = q±ni /2+2isym−i,2 jpole− j ,

whereisym is the (integral or half-integral) index of the symmetry meridian andjpole is the
(integral or half-integral) index of the northern grid parallel. In the model as we have used
it, the transpolar arc has been a prognosticu-grid row (jpole half-integral), and one repeated
t-grid row and one repeatedu-grid row beyond the polar arc have been included to enable
the computation of derivatives of quantities in the penultimate rows.
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FIG. 8. Scheme of grid lines and indices near the northern array boundary of an embedded rotated or conic
section grid. The symmetry meridian and the bounding grid parallel (joining the singularitiesP1 andP2) are shown
as bold dashed lines. Representative coordinate axes and indices are shown as seen from below and above the
boundary.

APPENDIX E

Integral Relations

In order to prevent nonlinear instabilities and cumulative errors, the finite differenc-
ing scheme of Bryan [6] has been designed to conserve certain first and second moment
quantities. Semtner [53] has shown that the nondissipative terms conserve global integrals
of tracer, tracer variance, and energy in the spherical coordinate model. Following his
approach, it is shown here that these integral constraints are also obeyed in the orthogonal
curvilinear model.

The time rate of change of the volume integral of tracer due to advection is

N∑
m=1

αm
δqm

δt
= −

N∑
m=1

6∑
i=1

Ai
m Vi

mq̄i
m,

whereαm is the volume of cellm, qm is its tracer value, and̄qi
m, Ai

m, Vi
m are the tracer

value, area, and exit normal velocity on thei th face. This integral is 0 becauseVi
m is 0 on

ocean boundaries and antisymmetric with respect to adjacent cells. The result places no
restrictions on the way that̄qi

m, Ai
m, or Vi

m are calculated nor does it require that theαm and
Vi

m be calculated consistently; it is thus equally applicable to curvilinear grids. The quantity
actually conserved is

∑N
m=1 αmqm/δt , which allows for a possible variation of time step

i.e., δtm) across the array. The volume integral of the tracer variance,
∑N

m=1 αmq2
m/δt , is

also conserved provided thatq̄i
m = (qm + qi

m)/2, whereqi
m is the value in the cell sharing
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the i th face, since

N∑
m=1

αm
δq2

m

δt
=

N∑
m=1

αm2qm
δqm

δt
= −

N∑
m=1

6∑
i=1

2Ai
mVi

mqmq̄i
m

= −
N∑

m=1

q2
m

6∑
i=1

Ai
mVi

m −
N∑

m=1

6∑
i=1

Ai
mVi

mqmqi
m = 0. (E1)

The first term of the expansion is 0 by continuity. The second term is 0 becauseqmqi
m is

symmetric andVi
m is antisymmetric for pairs of adjacent cells, and becauseVi

m = 0 on
boundaries. Once again, there is nothing that restricts this conclusion to a particular coor-
dinate system. The familiar treatment reproduced above makes the implied approximation
that errors due to the time discretisation are negligible, i.e., that(

δ2tq
2
m

)(n) = (q(n+1)
m + q(n−1)

m

)(
q(n+1)

m − q(n−1)
m

) = 2
(
qm

2t
)(n)

δq(n)m ≈ 2q(n)m δq(n)m .

This approximation requires that measures be taken to stabilise and suppress the computa-
tional mode in time which may be present in the leapfrog scheme.

In the momentum equations, there are two terms which should conserve variance, that
is to say kinetic energy—the advective term and the Coriolis force term. The advective
term for each component contains an elliptical or ‘flux-form’ part and a metric part. The
former conserves variance for reasons similar to those in the case of scalar variables except
that, as Semtner pointed out, a no-slip condition (ui

m = 0) is necessary to make the cross
term (in the expansion of Eq. E1) zero, sinceVi

m may be nonzero. The metric terms for
the two components also conserve variance, but only in combination. From Eqs. (33) and
(34),

N∑
m=1

αm
δ
(
u2

m + v2
m

)
δt

= −
N∑

m=1

6∑
i=1

2Ai
mVi

m

[
ui

mūi
m + vi

mv̄
i
m

]
+

N∑
m=1

2αm{um[−(L1um − L2vm)vm] + vm[(L1um − L2vm)um]} = 0.

The work done by (the explicit part of) the Coriolis term,um · f vm + vm · (− f um), is also
zero when both components are included, and this applies at every point.

Work may be done by hydrostatic pressure gradient forces when they are not geostrophi-
cally balanced. Semtner [53] showed that this is equal to the work done by buoyancy forces,
i.e., to the potential energy loss, so that total energy is conserved in this process. In the
curvilinear case, the work done by the pressure gradient forces is

− 1

ρ0

N∑
m=1

(h1h2)uu(h3)t
[
uuu δξ pttt

η/(h1)uu+ vuu δη pttt
ξ /(h2)uu

]
= − 1

ρ0

N∑
m=1

(h3)t
[
(uh2)uu δξ pttt

η + (vh1)uu δη pttt
ξ
]

= − 1

ρ0

N∑
m=1

(h3)t
[
δξ (uh2)uu

η + δη(vh1)uu
ξ ]

pttt .
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The second step results from a rearrangement of the expanded terms aroundp, which is
possible since normal velocities across ocean boundaries are zero (vide[43]). On applying
the hydrostatic relation and rearranging terms aroundw, the work done by buoyancy forces
may be written

− g

ρ0

N∑
m=1

(h1h2)t t wt tw ρt t t (h3)t
ζ = 1

ρ0

N∑
m=1

(h1h2)t t wt tw δζ pttt = 1

ρ0

N∑
m=1

(h1h2)t t δζwt tw pttt .

The two quantities are equal provided that

(h1h2)t t δζwt tw = −(h3)t
[
δξ (uh2)uu

η + δη(vh1)uu
ξ ]
.

This will be recognised as a form of the continuity equation. As in the spherical model,
the discretisation requires the horizontal mass fluxes att-cell faces to be represented as
weighted averages.

Eddy-induced transport conserves tracers and tracer variance when parameterised as a
Gent–McWilliams advection, since no restrictions are placed on the interfacial velocities
in Eq. (E1) except that normal velocities must be zero at boundaries. It thus conserves heat
energy; however, it is not designed to conserve mechanical energy, but rather to dissipate
it in a manner characteristic of the breakdown of baroclinic instability: there is thus no
need for eddy-induced velocities to be weighted in any special way, and it is convenient to
use values calculated at cell interfaces, as has been done in Eq. (32). Skew diffusion also
conserves tracers, but its variance-conserving properties depend upon the numerics used
for the rotated diffusion tensor. Griffies [24] shows that skew diffusion conserves variance
when formulated using the Griffieset al. [25] numerics. When implemented using Cox
[13] numerics, skew diffusion does not conserve tracer variance; however, it can reduce or
eliminate (in the case ofAE = AI ) theantidiffusive tendency of the isopycnal diffusion part
of theK13 andK23 terms. This has the practical benefit of helping to suppress checkerboard
waves in the tracer fields, which may be excited by dispersion or instability in the Cox
isopycnal scheme: the Gent–McWilliams parameterisation is unable to do this since it is a
component of centred advection, which has no effect on waves at the grid scale.
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